Beamline organization

This is a typical x-ray beamline. Optics hutch contains elements for conditioning the x-ray beam

LINAC (Linear Accelerator)

How does a beamline work?

© 2003 iMediasoft®, All rights reserved

Photon energy (wavelength) can be selected by crystal, net planes, and Bragg angle.

Double crystal monochromator

Problems with single crystal monochromators

- the monochromatic beam moves when the energy is changed
- high harmonic content
- big tails

Solution: double crystal design! Simplest design: cutting a channel for the beam in a silicon block (channel cut monochromator)

- Use the same crystals and *d*-spacing for 1st and 2nd crystals
- Keep parallel setting

X-ray Mirrors

reflectivity at grazing angles:

refractive index: n = 1 – r₀ $\rho \lambda^2 / 2\pi - i \mu \lambda / 4 \pi$

By Snell's law $(n_1 \cos(\theta_1) = n_2 \cos(\theta_2)$ with θ the grazing angle) in the absence of absorption (total reflection), we find total external reflection for angles less than $\theta_c \approx \lambda (r_0 \rho / \pi)^{\frac{1}{2}}$

 θ_c typically a few mrad for x-ray mirrors

Surface roughness must be considered around critical energy (angle).

Bent mirrors (focusing and collimating)

Free electron laser (FEL)

Figure 1. Comparison of several recently commissioned FELs (FLASH and LCLS) and several planned FELs (sFLASH, Euro XFEL, NLS) with a state-of-the-art undulator beamline on the Diamond Light source. The standard definition of brightness is given in photons/unit time/unit solid angle/unit area/normalised bandwidth. Courtesy of STFC, New Light Source Conceptual Design Report (2010) [1].

SASE – spontaneous amplified self-

emission

Figure 3. Schematic of SASE operation where the oscillation induced in the electron beam by the periodic magnetic field leads to radiation emission and, at the end of a sufficiently long undulator, self-organisation of the electrons gives rise to coherent X-ray emission. Reprinted by permission from Macmillan Publishers Ltd., Nature Photonics, B.W.J. McNeil and N.R. Thompson, *X-ray free electron lasers*, Nature Photonics, 4 (2010), pp. 814–821, copyright (2010).

Pump-probe experiment

Snapshots for different times after excitation ("pump-probe experiment") \Rightarrow "film" of the reaction

Obstacle: Coulomb-Explosion

Example: Lysozyme white: Hydrogen, grey: Carbon, blue: Nitrogen, red: Oxygen, yellow: Sulfur

Requirement: Pulse must be short enough and not to intense, to take picture before molecule disintegrates !

R. Neutze et al., Nature, August 2000

Properties of vacuum

pressure	monolayer time constant	molecular density	mean free path
p [mbar]	t (s)	n [m-3]	l [m]
1,00E+03	3E-09	2E+25	8E-09
1,00E+00	3E-06	2E+22	8E-06
1,00E-03	3E-03	2E+19	8E-03
1,00E-06	3E+00	2E+16	8E+00
1,00E-09	3E+03	2E+13	8E+03
1,00E-12	3E+06	2E+10	8E+06
1,00E-15	3E+09	2E+07	8E+09

Mean free path of electrons

Turbomolecular pump

lon pump

Fig. I.7a,b. Schematic view of an ion-getter pump: (a) The basic multicell arrangement. Each cell consists essentially of a tube-like anode. The cells are sand-wiched between two common cathode plates of Ti, possibly together with auxiliary cathodes of Ti. (b) Detailed representation of the processes occurring within a single cell. Residual gas molecules are hit by electrons spiralling around the magnetic field B and are ionized. The ions are accelerated to the cathode and/or auxiliary cathode; they are trapped on the active cathode surface or they sputter Ti atoms from the auxiliary cathode, which in turn help to trap further residual gas ions

CF-flange

Ionization gauge

Electromagnetic wave in mater

Drude-Lorentz-model

Examples for Lorentz oscillators

