
2.2.1 Semiadiabatic heat pulse method

The most intuitive approach to the heat capacity Cp = ∂U
∂T is the adiabatic supply of heat ∆Q to the

system while monitoring the temperature change ∆T . The ratio is the heat capacity of the system. In a
real experiment adiabatic conditions can only be approximated. Because of that one speaks of the semia-
diabatic heat pulse method. The basic set-up for measurements at low temperatures includes a platform,
where the thermometer, the heater and the sample is installed. It is depicted schematically in Figure 1.
For the electric connections and setting up the platform one uses wires or fibers with a low thermal
conduction to increase the thermal resistance R1. However, it should not become to high, since it is the
only connection over which the sample platform is cooled. On the other hand, the thermal resistance R2

between the platform and the sample is to be minimized. R2 becomes noticeable in an internal relaxation
time τ2, that concerns the temperatures of the single components on the platform.

Figure 1: Schematic view of the set-up for measuring the heat capacity at low temperatures. The reservoir
temperature Tb is kept as constant as possible. The thermometer measures the temperature of the platform,
which has a good thermal contact to the sample over the thermal resistance R2. The measured heat capacity is
C = C0 + Csample.

In the ideal case (R1 →∞ and R2 → 0) an adiabatic heat supply ∆Q leads to a change in temperature
∆T . In a non-adiabatic case thermal energy is already lost during the heating process to the environment.
Moreover, after the heat pulse there is a fast relaxation in temperature because of the internal relaxation
processes, that (in the most cases) eventually changes into a slower relaxation. The typical behaviour is
shown in Figure 2 (red curve). The external relaxation against the heat reservoir with the time constant
τ1 is superimposed with an internal relaxation τ2 directly after the heater is switched off. Now, the
temperature measured straight after the heating pulse does correspond to the ideal adiabatic ∆T . But
it is possible to extrapolate the measured temperature profile and calculate the value ∆T for an ideal
adiabatic heating curve. We consider the thermal balance of the sample platform and the environment
and obtain for the heat supplied by the heater:

Qheat =
1

R1

∫ ∞
0

(T (t)− T0) dt

Here T (t) is the time dependence of the sample temperature and T0 the base temperature before the
heating pulse. The result is independent of internal relaxation processes, so that the supplied heat can
always be obtained by multiplying the area under the curve T (t) with K1 = 1

R1
. The formula is also valid

for a virtual curve Tid(t) without internal relaxation, but with an external relaxation over the thermal
resistance R1 and an assumed instantaneous heat pulse at tid. Then:

Tid(t)− T0 ∝ e
−t
τ with τ = R1(C0 + Csample)
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Figure 2: Heat pulse technique – Interpretation of the measurement curve using the area adjustment method.
By enhancing the external relaxation backwards to a virtual time tid the internal relaxation processes can be
considered.

The function can be adjusted to the real temperature behaviour for t� τ2, i.e. when internal relaxation
processes do not play a role any more. The time tid follows from the requirement that the invested energy
is the same:

Qheat, real = Qheat, ideal ⇔
∫ ∞

0

(T (t)− T0) dt =

∫ ∞
tid

(Tid(t)− T0) dt

This equation for tid holds, if the yellow shaded areas in Figure 2 are equal. For the ideal height of the
heating pulse we now obtain

∆T = Texp(tid)− T0 .

Finally, with the thermal resistance of the heater R, the heating time t and the heater current I, the heat
capacity follows from:

Cp =
∆Q

∆T
=

RI2 · t
Texp(tid)− T0

2.2.2 Relaxation method

The relaxation method is based on the coupling of the sample to the heat reservoir and monitoring the
sample temperature as a function of time. For each measuring point the following procedure is followed:

• Wait for the sample temperature T0 to stabilize

• Increase the heating power by ∆P at the time t

• Observe the exponential development of a temperature gradient ∆T between the sample and the
environment

• Reset the heating power at the time t2

• Observe the exponential relaxation back to T0
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The exponential behaviour of the sample temperature after the increase and decrease of the heating power
is determined by the heat capacity and the thermal conductance K1 with respect to the heat reservoir.
The theoretical description becomes easier for R2 → 0, i.e. for a vanishing internal relaxation time in the
ensemble of sample and platform1. You have then T = Tsample = Tplatform and a mutual heat capacity
C = C0 + Csample. The temperature behaviour follows from the first law of thermodynamics.

∆Q = C dT

∆Q is the amount of heat that is supplied by the heater and discharged over the finite thermal resistance
R1.

∆Q = ∆Qheat + ∆QR1

The resistance R1 (or the conductance K1 = 1/R1), that corresponds to the thermal coupling to the
heat reservoir, is for example a wire that connects the platform with the environment. By applying the
law of diffusion (~j = −κ~∇T ) and the continuity equation (ρ̇ = −div~j) we obtain for an one-dimensional
conduction of heat in the thermodynamic equilibrium (ρ̇ = 0)

Q̇R1

A
= κ(T )

dT

dx
,

where Q̇R1 is the amount of heat per time that flows through the wire with the cross section A. κ is
the temperature-dependent thermal conductivity. Integration over the thermal conductance coefficient
K(T ) ≡ A · κ(T )/l yields

Q̇R1
= −

∫ T

Tb

K(T ) dT .

Here, Tb and T are the temperatures at the beginning and at the end of the wire with the temperature
gradient. If the change of the sample temperature T caused by the heating is small in comparison to the
base temperature Tb, it is possible to integrate over the constant averaged value K̄1 and we get

Q̇R1
= −K̄1(T − Tb) .

Using a constant heating power ∆P , one can now write down a differential equation for the thermal
behaviour. For reasons that become obvious later, we use T0 instead of Tb in the following.

C dT = ∆P dt− K̄1(T − T0) dT

The solution is an exponential curve with the general form:

T (t)− T0 = ∂T (t) =
∆P

K̄1
+

(
∂T (t0)− ∆P

K̄1

)
e−K̄1/C(t−t0)

For the turn-on procedure with ∆P > 0, times t > t1 and the relaxation time τ ≡ C/K̄1 the temperature
curve corresponds to that of a capacitor.

Theat(t) = T0 +
∆P

K̄1︸︷︷︸
≡∆T

(1− e−(t−t1)/τ )

The value of K̄1 is initially not known, but can be derived from the heating curve. After a long heating
period a temperature gradient ∆P

K̄1
= ∆T is established:

Theat(t→∞) = T0 +
∆P

K̄1

1From the experimental point of view a minimized internal relaxation time is desirabel. It is possible to consider these
processes in the analysis, but you rarely obtain more information than by just ignoring the measuring points that are
affected by the internal relaxation.
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Figure 3: Relaxation technique – The red curve shows the typical course of a warm-up and cool-down curve
depending on the heating power. The dashed line represents the extrapolated warm-up curve, approaching the
limit T0+∆T . The thermal conductance to the environment can then be derived from the equation ∆T = ∆P/K̄1.

The power ∆P and the stabilized base temperature T0 are known, so that K̄1 can be calculated. However,
in practice it is not possible to heat infinitely long. But ∆T can be determined by extrapolation of the
heating curve to long time scales. The typical course of a warm-up and cool-down curve is shown in
Figure 3, as well as a schematical representation of the extrapolation towards long time scales. Fitting
of Trelax to the cool-down curve yields a value for the relaxation time τ = C/K̄1. Thus, for each measu-
red temperature value the relaxation method delivers the relaxation time and the thermal conductance
coefficient, and consequently the heat capacity

C = τ · K̄1 .
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