Lecture Notes

Introduction to Strongly Correlated Electron Systems

WS 2014/ 2015

Mohsen Abd-Elmeguid

II. Institute of Physics, University of Cologne, Germany

Introduction to strongly correlated electron systems

I. Introduction

Brief summary of electrons in solids, origin of strong electron correlations

II. Classes of strongly correlated electron systems

(a) Transition metal compounds: 3d-electrons

- Hubbard model, Mott insulator, metal-insulator transition
- Spin, charge, and orbital degrees of freedom and ordering phenomena, selected materials

(b) Heavy fermion systems: 4f (5f) – electrons

- The Kondo effect, heavy fermion systems, non-Fermi liquid behavior,
- Quantum phase transitions, unconventional superconductivity, selected materials

(c) Nanoscale structures:

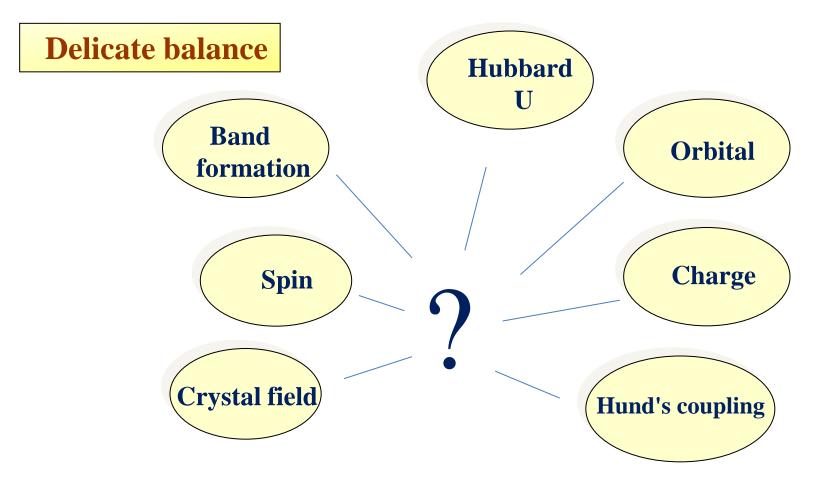
- Quantum confinement, unusual properties for potential applications

III. Pressure effect on the ground state properties:

- Recent experimental results on heavy fermions and transition metal compounds

IV. Summary and open discussion

Transition metal systems and electron correlations



systems can be quite close to the borderline U~ W (t) Thus many interesting transitions to unusual ground states can occur by changing T, P, filling, structure, etc.

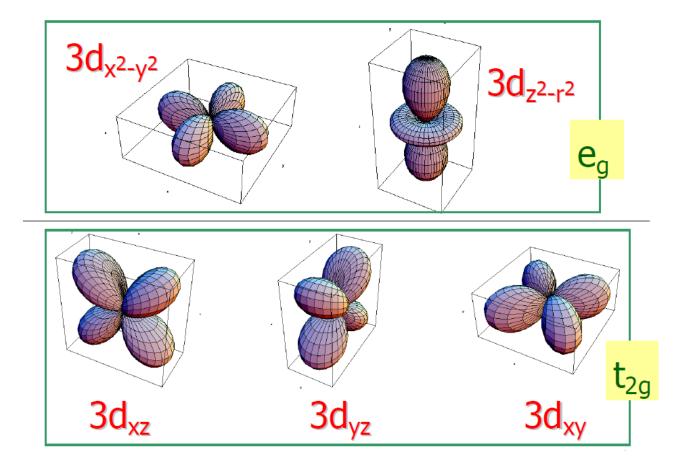
more discussion with examples later!

Orbital degree of freedom

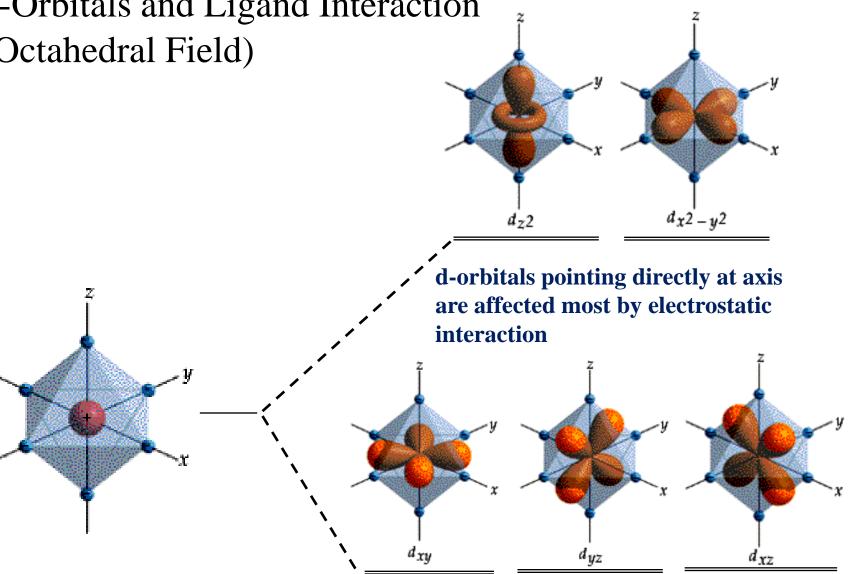
3d orbitals in central potential of a free atom/ ion

5-fold degenerate 3d orbitals

3d: n=3,
$$\ell$$
=2, m $_{\ell}$ = -2,-1,0,1,2 \longrightarrow 5 orbitals

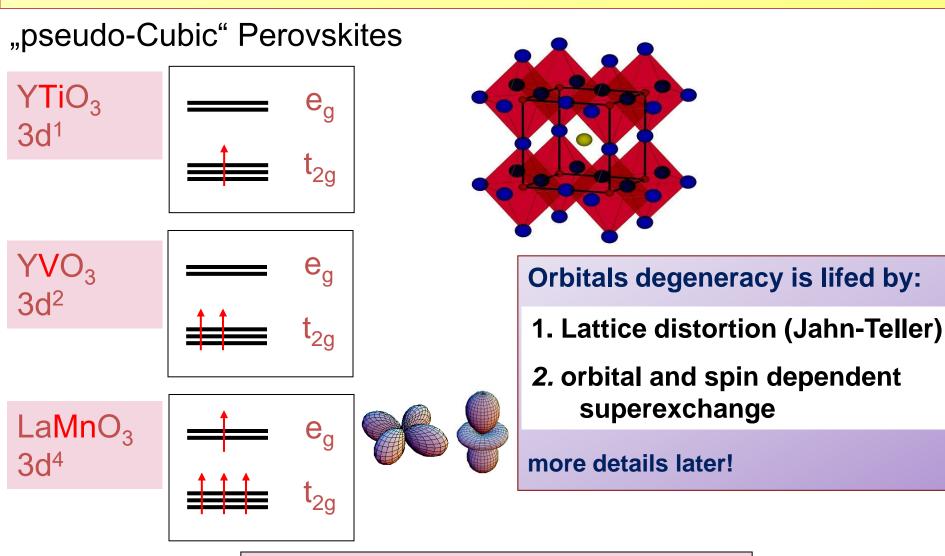


d-Orbitals and Ligand Interaction (Octahedral Field)



d-orbitals not pointing directly at axis are least affected (stabilized) by electrostatic interaction

Orbitals degeneracy

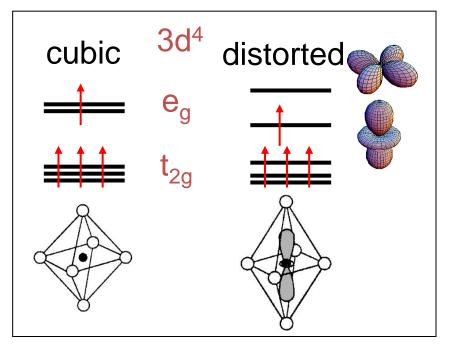


Differences between Orbitals and Spins

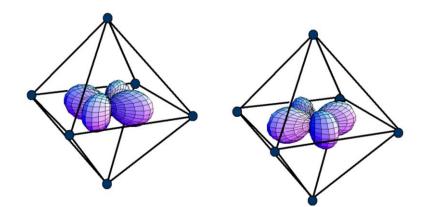
The orbitals are usually strong coupled to the lattice

Distortion

Lifts the orbital degeneracy



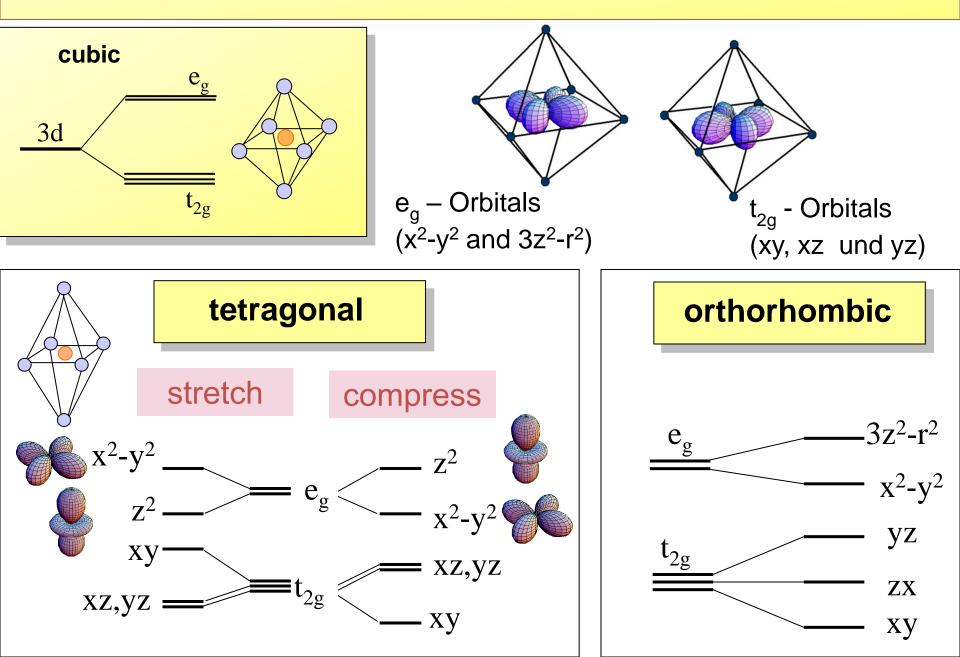
Anisotropy



rotated orbitals are not equivalent Spins in 1. approximation invariant; e.g. In Ferromagnets alle spins are aligned in the same direction, but this direction is arbitary

If, however, exchange interaction is domenating, orbitals will be strongly coupled to the spins

Lower Symmetry



Orbital Order

Orbital degeneracy is lifted by:

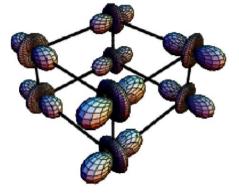
1. Lattice distortion (Jahn-Teller) and/ or

2. orbital and spin dependent superexchange

Both mechanisms lead to orbital order

orbital order:

periodic arrangement of specific orbitals which leads to a long-range ordered pattern



LaMnO₃

Types of orbital ordering

Ferro-orbital ordering:

the same orbital is occupied at each site

Antiferro-orbital ordering:

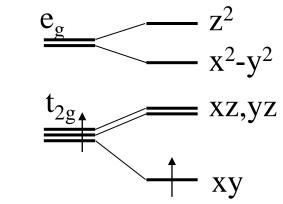
i j

different orbitals are occupied at neighboring sites

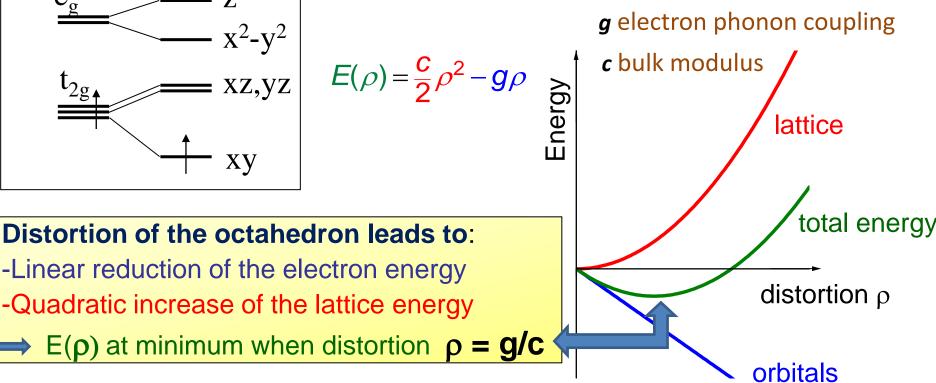
Jahn-Teller-Effect

Orbitals degeneracy is lifted by spontaneous distortion

e.g.: 3d¹ in cubic crystal field



Jahn-Teller active lons (orbital degeneracy): 1, 2, 4, or 5 elektrons in t_{2q}-Orbitals; or 1 or 3 elektrons in e_q-Orbitals



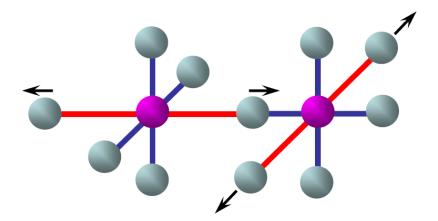
By the distortion, the orbital degree of freedom is "quenched"; but spin degree of freedom remains preserved.

Orbital Order- Cooperative JT effect

Coupling between local distortions on different sites

Jahn-Teller effect mediates interaction between orbitals of next neighbors sites, thereby leading to orbital order

Cooperative Jahn-Teller effect



stretching of next neighbors Octahedra in direction perpendicular to each other.

2. Orbital and spin dependent superexchange

exchange mechanism which couples Orbital and magnetic order

Kugel-Khomskii model

description and comments, see board!

For more details, see:

K. I. Kugel and D. I. Khomskii, Sov. Phys. JETP 37, 725 (1973);K. I. Kugel and D. I. Khomskii, Sov. Phys. Ups. 25, 231 (1982)

Onbital order : kugel-khomsku model

* consider orbital ordering for the case of double degenerancy (UMI) ad with 1 electron per site, n=1 a jonly eg electrons, no Jahn-Teller distortion 1. Spin or (or = ± 1) => double deg == 2 * localized electrons are characterized by 2. Index of occupied orbital (d=1 or 2) =) extra double degenerancy : effective pseudospin operator $\mathcal{C} = \pm \frac{1}{2}$ T=+1 for orbital 1 $C^{2} = -\frac{1}{2}$ // // 2 => orbital degenerancy = 22 + 1 = 2

Description of the spin - orbital intraction by the degenerate Hubbard model, which includes the intra-atomic exchange responsible for Hund's rule coupling

H=Z t C C + UZ nie nie J (±+28:sip) sites i,j i do jBo i, aB at spin 200 sites i,j i direction different spins same state (i); alterent orbital 1, 2) same state (i); different orbitals $-J_{H} \stackrel{?}{\underset{\alpha \neq \beta}{\overset{\neg}{=}} \left\{ \begin{array}{c} \frac{1}{2} + 2 \stackrel{?}{\underset{i_{1}}{\overset{\circ}{s_{i_{2}}}} \right\} \left\{ \begin{array}{c} \mu \end{array} \right\} \stackrel{?}{\underset{\alpha \neq \beta}{\overset{\neg}{=}} \left\{ \begin{array}{c} \frac{1}{2} + 2 \stackrel{?}{\underset{i_{1}}{\overset{\circ}{s_{i_{2}}}} \right\} \left\{ \begin{array}{c} \mu \end{array} \right\} \stackrel{?}{\underset{\alpha \neq \beta}{\overset{\circ}{=}} \left\{ \begin{array}{c} \frac{1}{2} + 2 \stackrel{?}{\underset{i_{1}}{\overset{\circ}{s_{i_{2}}}} \right\} \left\{ \begin{array}{c} \mu \end{array} \right\} \left\{ \begin{array}{c} \frac{1}{2} \stackrel{?}{\underset{\alpha \neq \beta}{\overset{\circ}{=}} \right\} \left\{ \begin{array}{c} \frac{1}{2} + 2 \stackrel{?}{\underset{i_{1}}{\overset{\circ}{s_{i_{2}}}} \right\} \left\{ \begin{array}{c} \mu \end{array} \right\} \left\{ \begin{array}{c} \frac{1}{2} \stackrel{?}{\underset{\alpha \neq \beta}{\overset{\circ}{=}} \right\} \left\{ \begin{array}{c} \frac{1}{2} + 2 \stackrel{?}{\underset{\alpha \neq \beta}{\overset{\circ}{=}} \right\} \left\{ \begin{array}{c} \mu \end{array} \right\} \left\{ \begin{array}{c} \frac{1}{2} \stackrel{?}{\underset{\alpha \neq \beta}{\overset{\circ}{=}} \right\} \left\{ \begin{array}{c} \frac{1}{2} + 2 \stackrel{?}{\underset{\alpha \neq \beta}{\overset{\circ}{=}} \right\} \left\{ \begin{array}{c} \mu \end{array} \right\} \left\{ \begin{array}{c} \frac{1}{2} \stackrel{?}{\underset{\alpha \neq \beta}{\overset{\circ}{=}} \right\} \left\{ \begin{array}{c} \mu \end{array} \right\} \left\{ \left\{ \begin{array}$

How do orbital correlations drive magnetism (kugel-khomskin model) assume: only hopping between the same orbitals => t"=t=t, t"=o same orbitals 2 - _____ orbitel 2 orbital 1 - - X. ci) cj) (11) opposite spinst (i) (j) (i) (j) opposite spins 1) parallel spins 11 same spin directim(11) $= 7 \circ E = \frac{-2t^{\circ}}{11}$ =) SE=0 $\Rightarrow \delta E = -\frac{2t^{2}}{u} \Rightarrow \Delta E = \frac{-2t^{2}}{u}$ =) E = 0 fm = 0 = $E_{AF} = -2t$ Lowest Energy Et_ 4-JH Results : >> Results: ferroorbital ordering => antiferromagnetic antiferro-orbital order ing order => ferromagnetic ordering > Virtuel hoppings lead to both simultaneously to both orbital and spin ordering

effective exchang Humiltonian (kugel-khomskii); zeg electrons 2 orbitals, 2 spin directions ?! =) 4 states for 2 eg electrons [1, 1 > =) $2^{2} = \pm \frac{1}{2}, s^{2} = \pm \frac{1}{2}$ orbit spin [2, 1> =) $2^{2} = -\frac{1}{2}, s^{2} = \pm \frac{1}{2}$ 11, 17 =) $|2,\uparrow\rangle \Rightarrow$

Directional nature of orbitals and exchange interactions =) orbital occupancy determine the sign and magnitude of the exchange interactions =7 magnetic ground state Exaple s

Examples:

orbital occupancy determine the sign and magnitude of exchange interaction, see board!

KCuF3 = JT distortion = clongation along the ab plan

Cubic peroviskite

 $Cu^{2+}(3d^9)$; Eg System $y^2 - z^2/z^2 - z^2$ 1 d h de(eg) $x^{3x^{2}-r^{2}/3y^{2}-r^{2}}$

cg Tt

Tt . tzg

J_(Ja ~ 100

=> 1 dimensional AF chain || to Z O, despite cubic studie (

19-22>

x-2)

LaVOz ; V^{3t} (3d²): t_{2g} system (assuming hopping to) same orbited Ferromagnetic insulator antiparallel spins (AF pair) parallel spins at i -(j (FH pair) $-J_{\mu} = J_{\mu} \Rightarrow -2J_{\mu}$ midul => - 2 JH $-J_{4}$ initial $\frac{1}{4} \Rightarrow U-3J_{H}$ $U-3J_{H}$ 4 => U-JH find find U-JH $\Delta E_{\Pi^2} (U - 3J_H) - (-2J_H)$ $\mathcal{D}E_{\uparrow I} = \mathcal{U} - \mathcal{J}_{\mu} - (-2\mathcal{J}_{\mu})$ DEM = U-JH $\Delta E_{TL} = U + J_{H}$ FM chains despite cubic structure ! In Grown t FM-STO

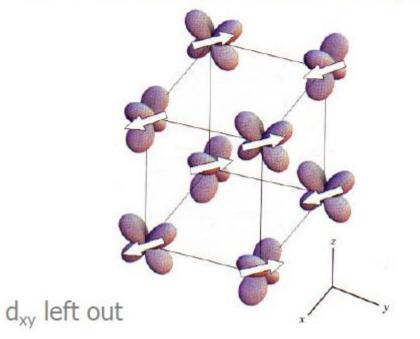
order patterns: LaVO3

• La =
$$3+$$
, $O_3 = 6-$, thus V = $3+$

21	22	23	24	25	26	27	28	29	30
SC	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn

(

V³⁺ means 3d²: a system with partial t_{2g} occupation

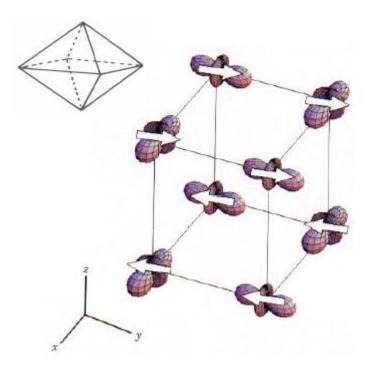


orbital-spin pattern: spin z: FM chains spin xy: AFM orbital: d_{yz} and d_{xz} alternate in x, y and z anisotropic despite cubic structure !

order patterns: LaMnO3

La = 3+, O₃ = 6-, thus Mn = 3+

Mn³⁺ means 3d⁴: a Jahn-Teller system.



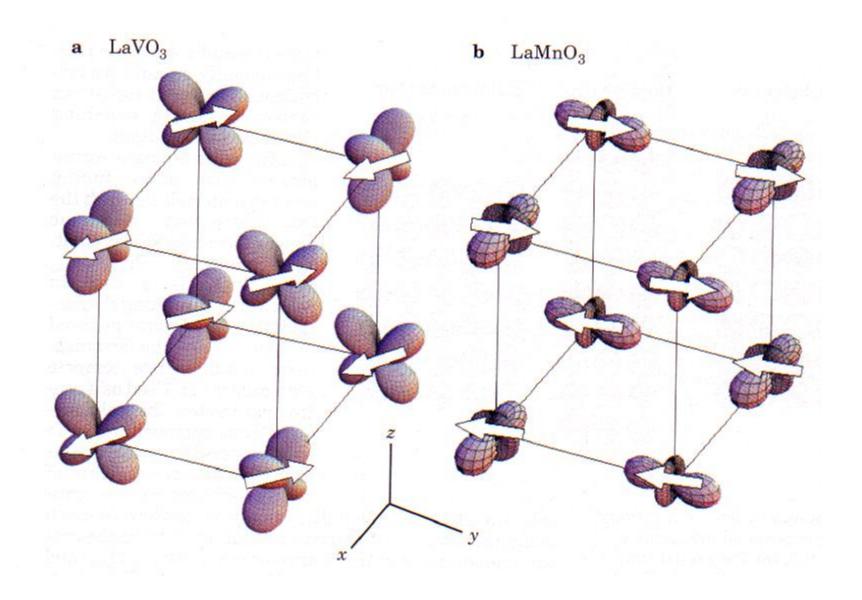
 $e_g - Orbitals$ (x²-y² and 3z²-r²) orbital degeneracy lifted by JT:

favours occupation of either $3d_{z^2-r^2}$ or $3d_{x^2-y^2}$

linear combination alternating:

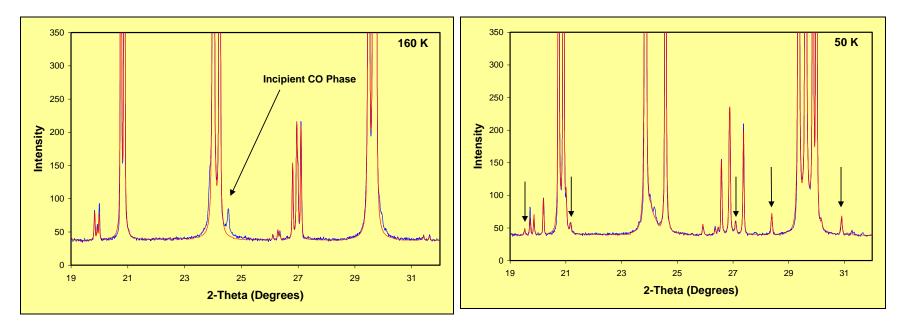
$$\begin{array}{c} d^{4} & b_{1g} \\ e_{g} & 2 \\ \hline \\ a_{1g} \\ \hline \\ b_{2g} \\ \hline \\ t_{2g} \\ \hline \\ \end{array} \begin{array}{c} e_{g} \\ e_{g} \\ \hline \\ \end{array} \begin{array}{c} e_{g} \\ e_{g} \\ \hline \\ \hline \\ \end{array} \end{array}$$

21 22 23 24 25 26 27 28 29 30 Sc TI V Cr Mn Fe Co NI Cu Zn



Experimental methods for investigation of Orbital Ordering

Charge Ordering in Nd_{0.5}Sr_{0.5}MnO₃

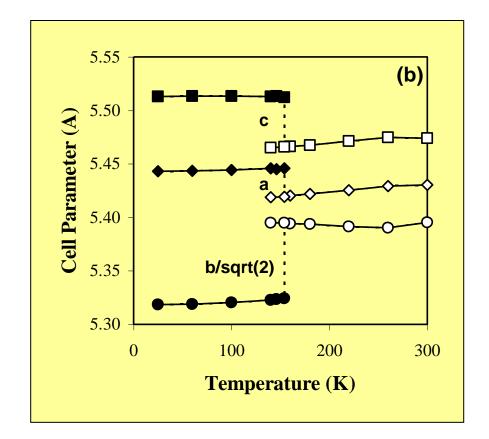


Synchrotron X-ray Powder Diffraction Data (NSLS-X7A)

A series of weak superstructure reflections arise (1% intensity at the strongest) that indicate doubling of the *a* -axis.

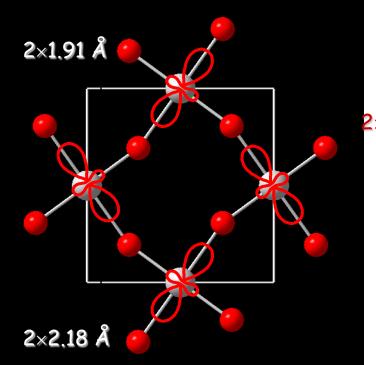
Woodward, Cox, Vogt, Rao, Cheetham, Chem. Mater. 11, 3528-38 (1999).

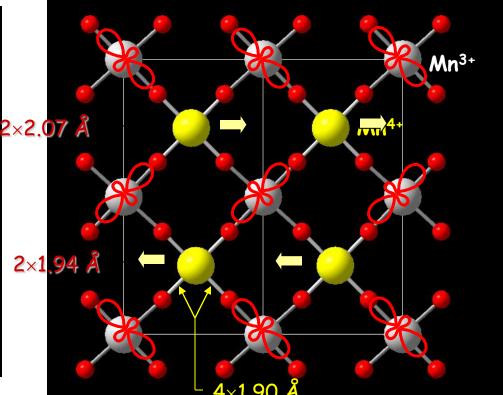
Orbital Ordering in Nd_{0.5}Sr_{0.5}MnO₃



Upon cooling below 150 K, the *a* & *c*-axes expand and the *b*-axis contracts. This is the signature of orbital ordering

Examples of Orbital Ordering





LaMnO₃ (298 K) Rodriguez-Carvajal, et al. Phys. Rev. B **57**, R3189 (1998). NdSrMn₂O₆ (50 K) Woodward, et al. Chem. Mater. **11**, 3528-38 (1999).

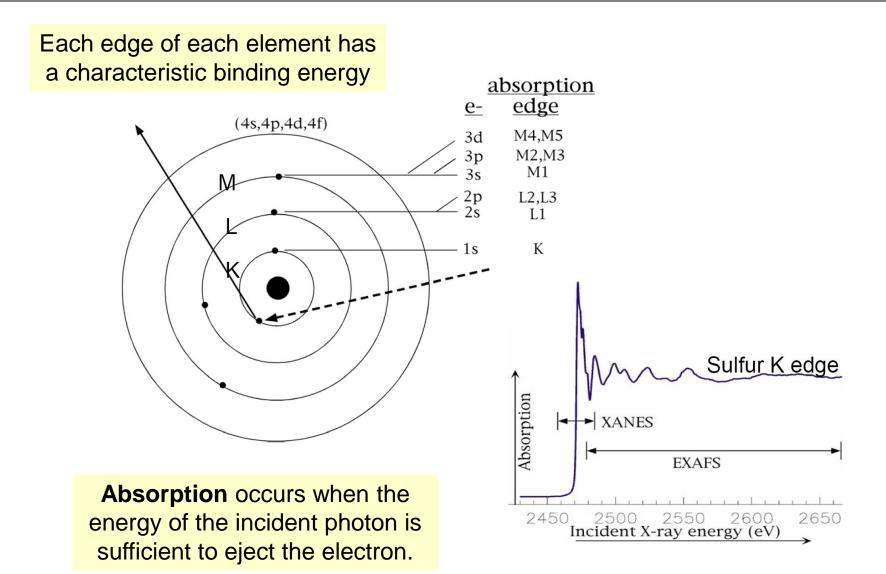
Experimental methods for investigation of Orbital Ordering

Resonant Inelastic X-ray Scattering (**RIXS**)

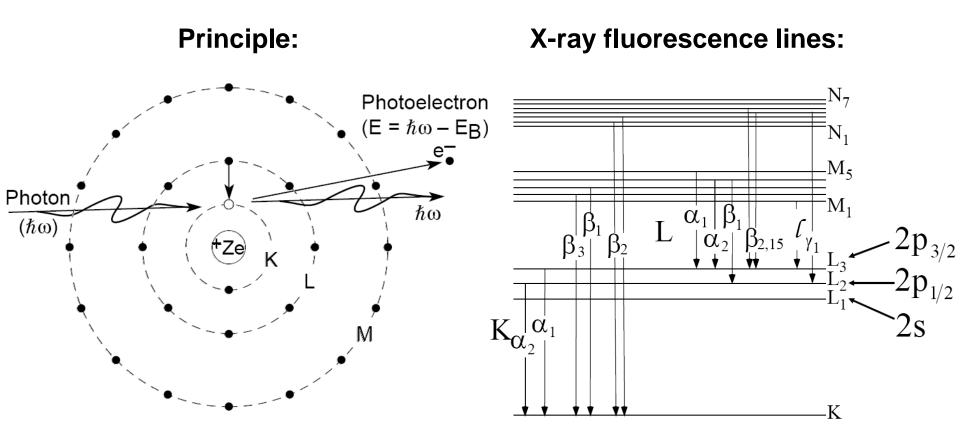
For an excellent review see: Amen et. al; Rev. Mod. Phys. 83 705 (2011)

First in short: X-ray absorption spectroscopy

X-ray absorption spectroscopy

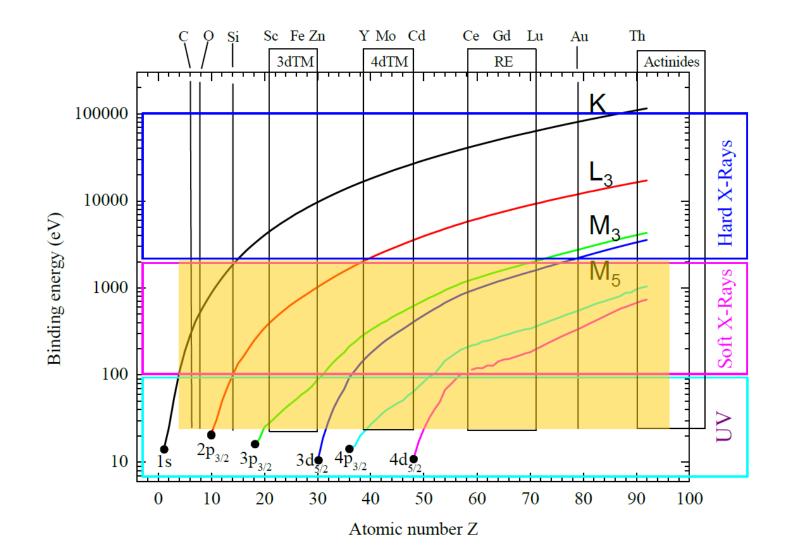


X-ray fluorescence spectroscopy (XFS)

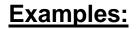


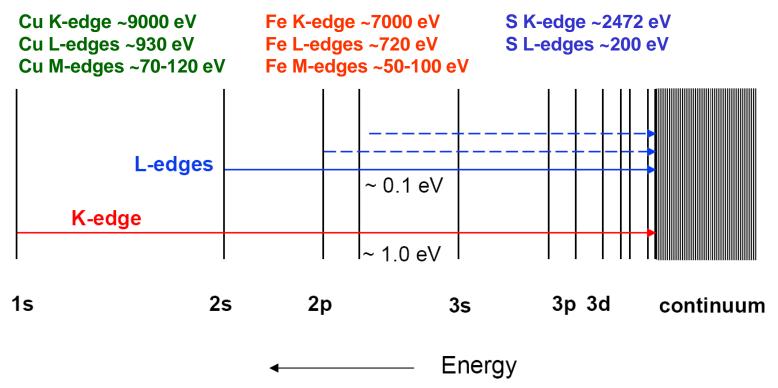
an element specific technique!

core level energies



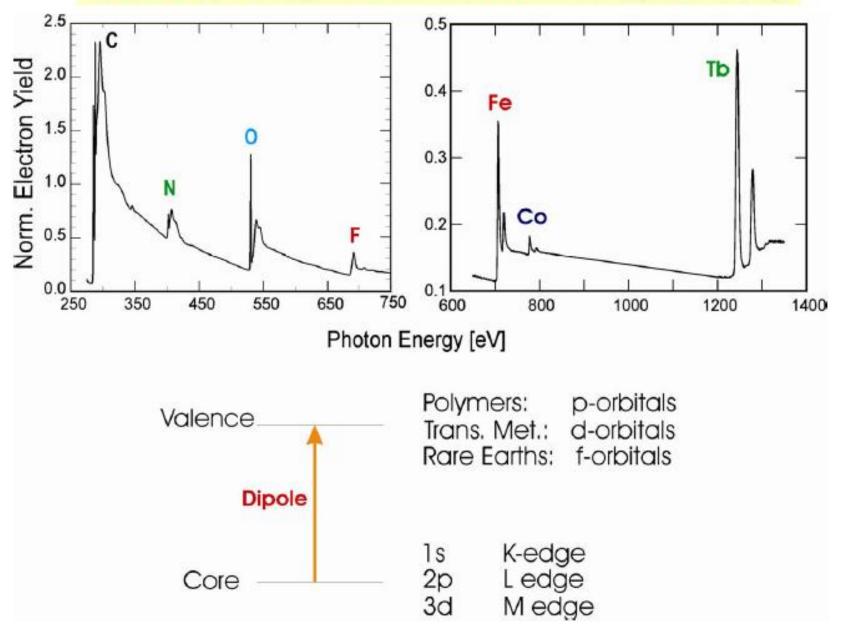
Examples for different edges



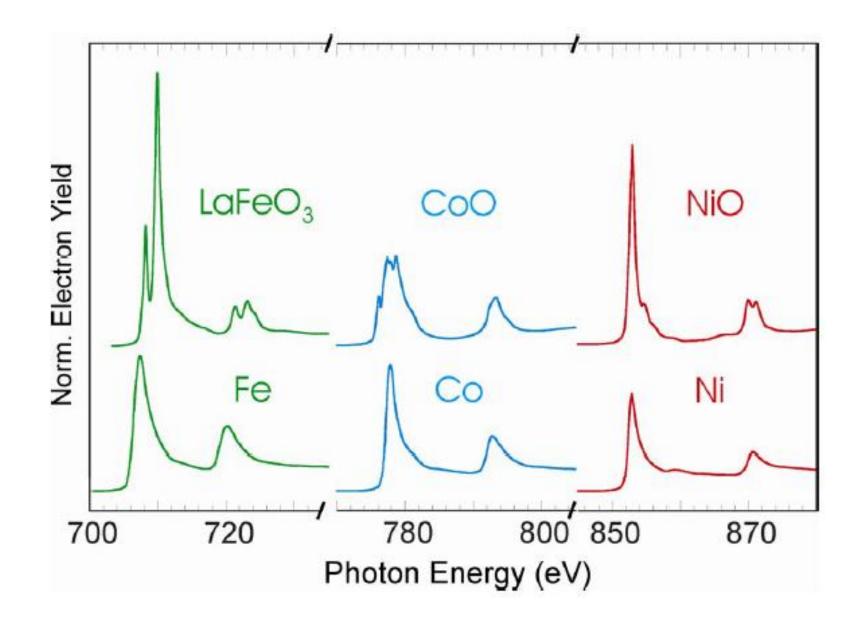


- An edge results when a core electron absorbs energy equal to or greater than its binding energy
- Results in transitions to unoccupied atomic or molecular orbitals
- Edges are labeled according to the shell the core electron originates from

Tunable x-rays offer elemental specificity



Rich "multiplet structure" reveals local bonding



Jahn-Teller distortion and/ or Superexchange lead to orbital order

Excitations are different!

Local crystal field excitations vs. dispersing orbitons

Superexchange: spins and orbitals entangle.

Jahn-Teller: spins and orbitals decouple, orbitals frozen out at low temperatures.

Elementary excitations in condensed matter

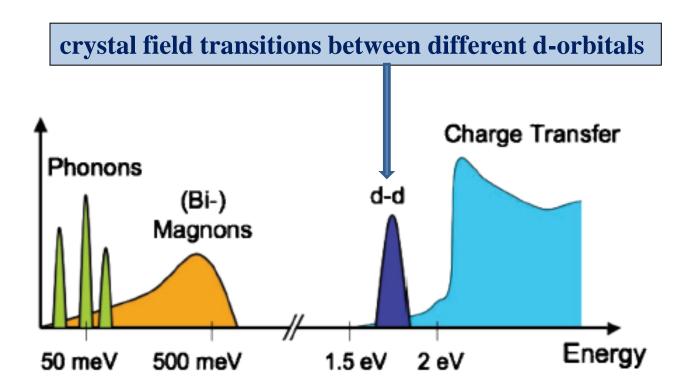
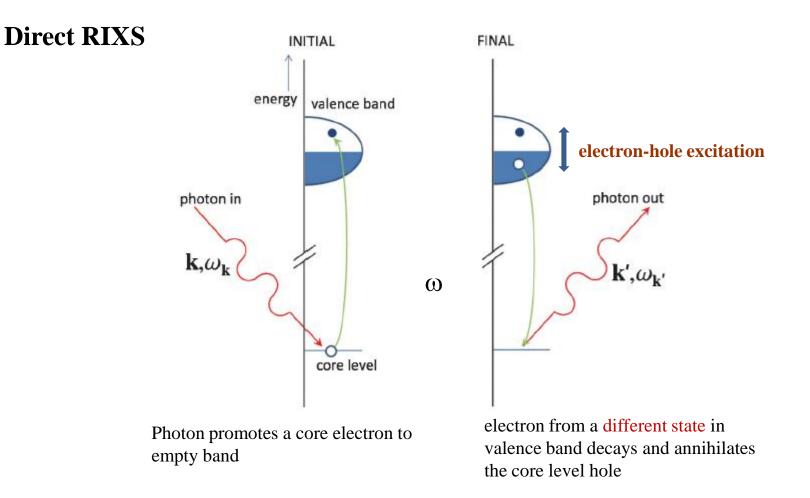


FIG. 6 (color). Different elementary excitations in condensed matter systems and their approximate energy scales in strongly correlated electron materials such as transition-metal oxides.

Ament et. al; Rev. Mod. Phys. 83 705 (2011)

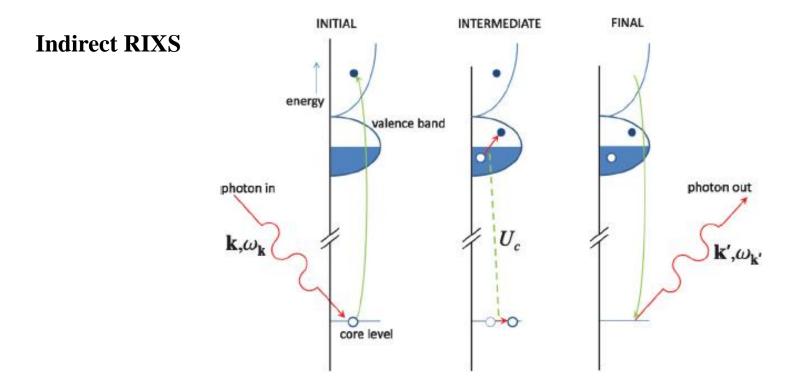
Resonant Inelastic X-ray Scattering (**RIXS**)

For an excellent review see: Amen et. al; Rev. Mod. Phys. 83 705 (2011)



RIXS creates excitation in the valence band with momentum $\hbar \mathbf{k}' - \hbar \mathbf{k}$ and energy $\hbar \omega_{\mathbf{k}'} - \hbar \omega_{\mathbf{k}}$

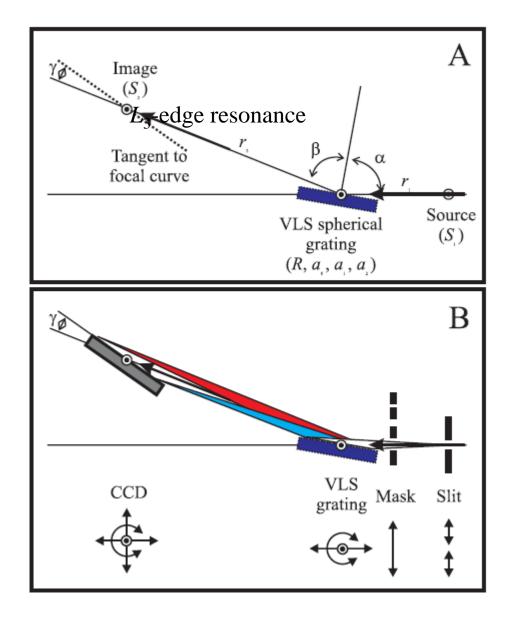
Amen et. al; Rev. Mod. Phys. 83 705 (2011)

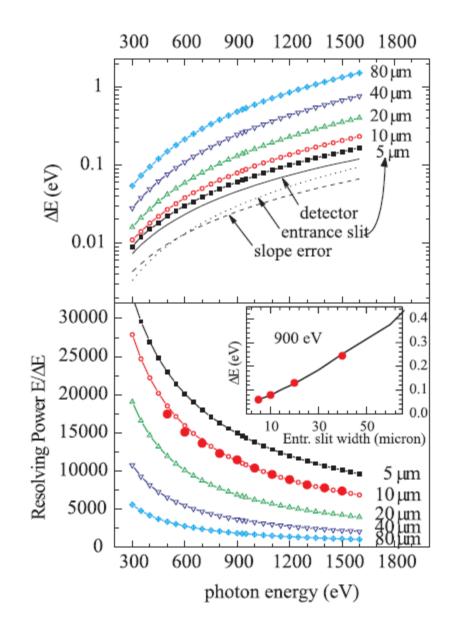


electron is excited from a deep-lying core level into the valence shell. Excitations are created through the Coulomb interaction U_c between the core hole (and in some cases the excited electron) and the valence electrons. The photoelectron subsequently decays leaving behind an excitation in the valence band with momentum $\hbar \mathbf{k}' - \hbar \mathbf{k}$ and energy $\hbar \omega_{\mathbf{k}'} - \hbar \omega_{\mathbf{k}}$

The measured photon energy transfer and momentum transfer in a RIXS experiment is directly related to the energy and momentum of the created excitations (spinons, orbitons)

RIXS Instrument for soft x-rays: SAXS at the Swiss Light Source





RIXS Instrument for hard x-rays: IDB 30 beamline at APS, USA

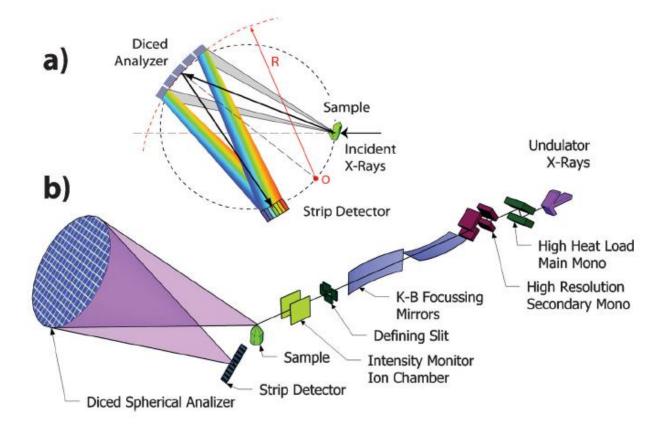
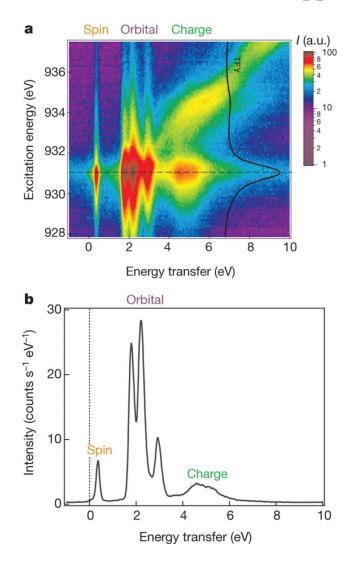


FIG. 15 (color). Schematic of optical components in the 30 IDB inelastic x-ray scattering beam line at the Advanced Photon Source, USA. Figure courtesy of D. Casa (APS).

Energy dependence of elementary excitations in Sr_2CuO_3 observed with RIXS at the copper L_3 -edge resonance.



J Schlappa et al. Nature 485, 82 (2012)

dispersion of orbital and spin excitations across the first Brillouin zone

J Schlappa et al. Nature 485, 82 (2012)

