Lecture Notes

Introduction to Strongly Correlated Electron Systems

WS 2014/ 2015

Mohsen Abd-Elmeguid

II. Institute of Physics, University of Cologne, Germany

Introduction to strongly correlated electron systems

I. Introduction

Brief summary of electrons in solids, origin of strong electron correlations

II. Classes of strongly correlated electron systems

(a) Transition metal compounds: 3d-electrons

- Hubbard model, Mott insulator, metal-insulator transition
- Spin, charge, and orbital degrees of freedom and ordering phenomena, selected materials

(b) Heavy fermion systems: 4f (5f) – electrons

- The Kondo effect, heavy fermion systems, non-Fermi liquid behavior,
- Quantum phase transitions, unconventional superconductivity, selected materials

(c) Nanoscale structures:

- Quantum confinement, unusual properties for potential applications

III. Pressure effect on the ground state properties:

- Recent experimental results on heavy fermions and transition metal compounds

IV. Summary and open discussion

Some comments on electrons in Solids:

Theoretical description using **two different approachs/ approximations** without taking into account electron-electron correlations:

- The nearly-free electron model (itinerant electrons in very weak periodic potential)
- The tight-binding model (electrons localized on an atomic site but weakly coupled to all other atoms----use Linear Combination of Atomic Orbitals, LCAO)

Both models qualitatively yield the same results and are well known to most of you in details from the lectures on Solid State Physics by Prof. M. Grüninger and Pd Dr. T. Lorenz .

To remind you, I just will go briefly through the two models and stress on some relevant points!

Bloch theorem for non-interacting electrons in a periodic potential

$$-\frac{\hbar^2}{2m}\nabla^2\psi(r) + U(\vec{r})\psi(r) = E\psi(r)$$

 $U(\vec{r}) = U(\vec{r} + R)$

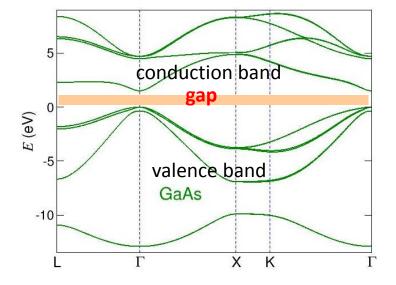
R is a Bravais lattice vector!

... where $U(\vec{r})$ is a function with the periodicity of the lattice

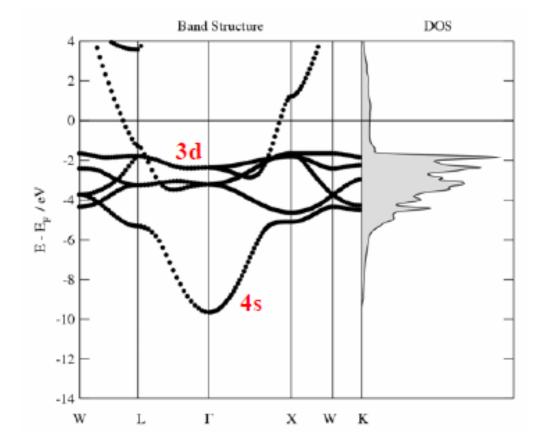
Bloch's theorem tells us that eigenstates have the form

$$\psi(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}U(\vec{r})$$

Energy eigenvalues $E_n(k)$ Band structure!



Copper: Valence States



Some comments to the effective mass of electrons

The effective mass of Bloch electrons

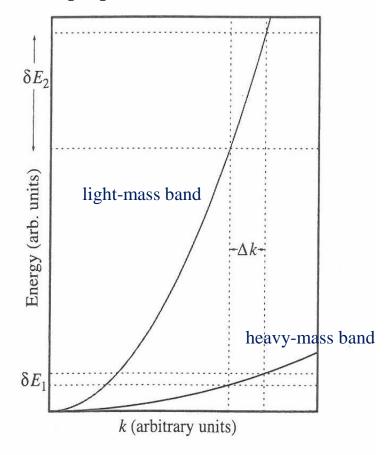
The motion of electrons is modified by the crystal potential through which it moves

$$m^* = \left(\frac{1}{\hbar^2} \frac{d^2 E}{dk^2}\right)^{-1}$$

1/ curvature of the band is proportional to m^*

Heavy effective mass implies high density of states D(E) and high γ and vice versa

Electrons in a crystal are accelerated in response to an external force just as though they were free electrons with effective mass m^*



The effective mass of electrons and density of states

$$D(E_F) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} E_F^{1/2} \qquad C_{el} = \frac{\pi^2}{3} k_B^2 D(E_F) T = \gamma T \quad \text{, hence } \gamma \propto m$$

For free electrons γ calculated per mole:

$$\gamma_{th} = \frac{\pi^2}{3} k_B^2 D(E_F) = \frac{\pi^2 k_B^2 m N_0 z}{\hbar^2 (3\pi^2 N/V)^{2/3}}$$

 N_0 Avogadro s number and z number of conduction electrons per formula unit

comparison of γ_{th} with experimental γ values

1	1	1
		-

Metal	γ	$\gamma_{ th}$	Metal	γ	Metal	γ	m
Li	1.63	0.749	Fe	5.0	CeAl ₃	1600	m
Na	1.38	1.094	Co	4.7	CeCu ₆	1500	
K	2.08	1.668	Ni	7.1	$CeCu_2Si_2$	1100	
Cu	0.69	0.505	La	10	$CeNi_2Sn_2$	600	
Ag	0.64	0.645	Ce	21	UBe ₁₃	1100	
Au	0.69	0.642	\mathbf{Er}	13	U_2Zn_{17}	500	
Al	1.35	0.912	\mathbf{Pt}	6.8	YbBiPt	8000	
Ga	0.60	1.025	Mn	14	PrInAg ₂	6500	
-1.5		21/2	$t_{th} \approx 10 - 3$	s0		00 - 10	

mainly s-electrons, broad bands

 γ / γ_{th}

partially filled d-bands

heavy fermion compounds 4 f (5f)orbitals strong electron-electron correlations SCES

Why m^* is so large in some 4f and 5f electron system?

No answer from the band theory (one electron approximation), neglecting electron-electron interactions. This will be discussed in Chapter II (b).

The tight - binding model

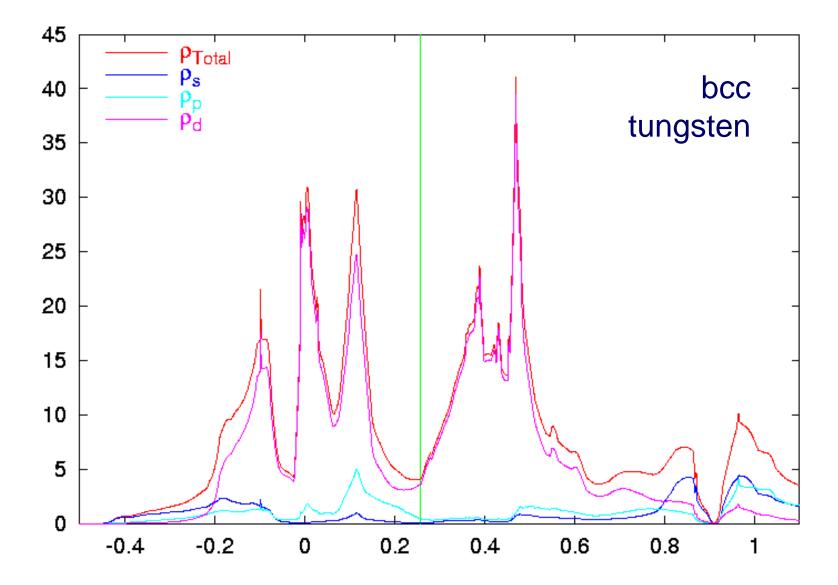
- Electrons (inner shells) are strongly localized and mainly see the atomic potential > use Linear Combination of Atomic Orbitals (LCAO)

0

- The atomic wave function of level i to at site R (R site of Bravais lattice) is defined by $\mathcal{H}_{A}(\vec{r}-\vec{R}).\phi_{A}(\vec{r}-\vec{R}) = E_{A}\phi_{A}(\vec{r}-\vec{R})$ — (1) -) $M_A(\vec{r} \cdot \vec{R}) = -\frac{t^2}{2m} \vec{r}^2 + V_A(\vec{r} - \vec{R})$ - Lattice periodic potential $V_A(r)$ $V(\vec{r}) = \sum_{\vec{k}} V_{A}(\vec{r} - \vec{k}')$ = $V_{A}(\vec{r} - \vec{k}) + \sum_{\vec{k}' \neq \vec{k}} V_{A}(\vec{r} - \vec{k}')$ = $V_{A}(\vec{r} - \vec{k}) + \sum_{\vec{k}' \neq \vec{k}} V_{A}(\vec{r} - \vec{k}')$ $= \bigvee_{A} (r - n)^{i} \frac{1}{R^{i} \neq R}$ $= \bigvee_{C} (r - R)$ $= \bigvee_{C} (r - R)$ $= \bigvee_{a} (r - n)^{i} \frac{1}{R^{i} \neq R}$ $= \bigvee_{a} (r - R)$ $= \int_{a} (r - R)$ $= \int_{a$

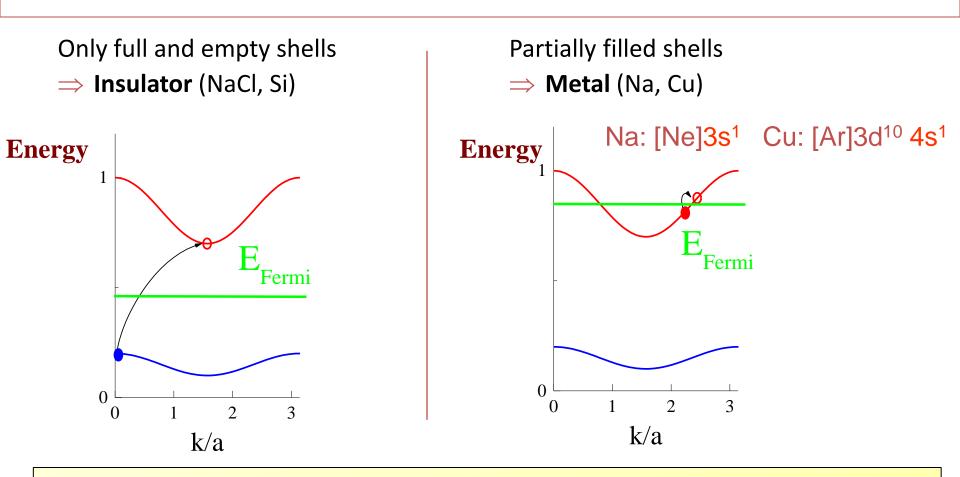
+ight binding energy bands (4) $= E(\vec{k}) = E_{A}^{i} - A - 2t_{x} \cos(k_{x}a) - 2t_{y} \cos(k_{y}b) - 2t_{z} \cos(k_{z}c) - B$ t______ ty, tz hopping integrals atomic level Band midth W = 12 t in 3 D Cubic Lattice Sinding energy (electrons at site R feel (cos from -1 to +1) the attraction potential $\tilde{V}(\tilde{r}-\tilde{R})$ of all other ions - dispersion results from finite overlap (hopping) in general: $\exists t \sim \langle \phi_A (r - \vec{R}) | \vec{V} | \phi_A (r - \vec{R}) \rangle$ schematic representation of formation of TB bands R' nearest neighbor Energy levels (Spacing)⁻¹ n = 3 notes: Band width depends on the spatial extent Bands each of wf, interationic distance, and on with N values of k the number of nearest neighbors (nn) W= 22t == 2 for ID N-fold degenerate levels (a) eqs. (B) fr 1) $= E(k) = E_{\beta} - 2t \cos k_{\chi} \times (B')$ (Simpleton)

Electron Density of States: LCAO



We now discuss the breakdown of the band theory in describing the ground states of strongly correlated transition oxide systems

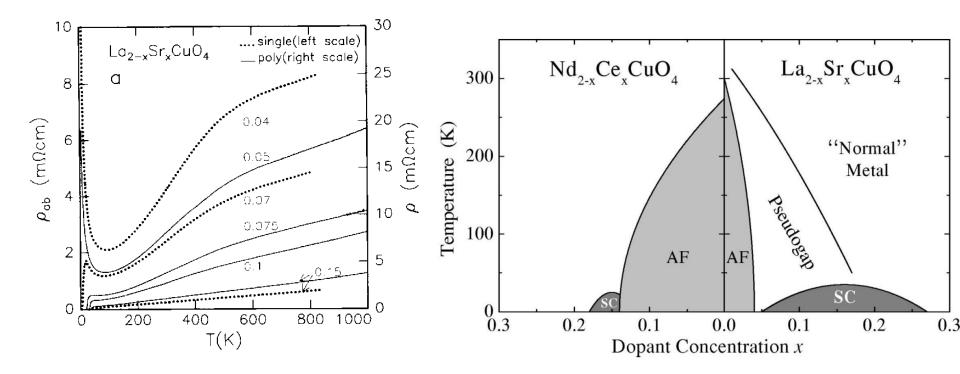
Insulator vs. Metal



Examples of correlated Insulators with partially filled shells: La_2CuO_4 : Cu^{2+} : $[Ar]3d^9$ La^{3+} : $[Xe] O^{2-}$: [Ne] V_2O_3 : V^{3+} : $[Ar]3d^2$ O^{2-} : [Ne] Nd_2O_3 : Nd^{3+} : $[Xe]4f^3$ O^{2-} : [Ne]

High- T_c -Superconductivity in La_{2-x}Sr_xCuO₄

 La_2CuO_4 : antiferromagnetic Mott-Insulator. Doping with Sr²⁺ for La³⁺, high-T_c-Superconductor La_{2-x}Sr_xCuO₄

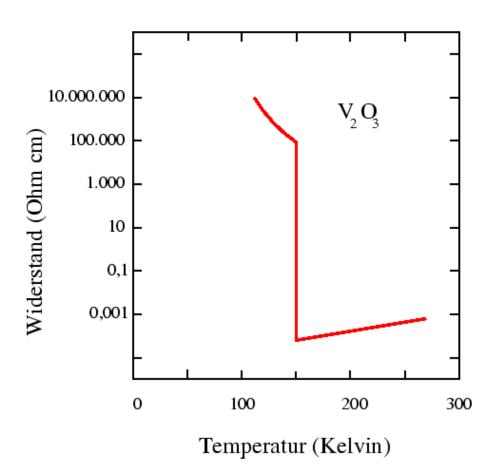


A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

Metal-Insulator transition in V_2O_3

Mott-Hubbard-System: Metal-insulator transition as a function of temperature (factor 10⁸ !) as a function of temperature T ~ 150 K without structural phase transition!

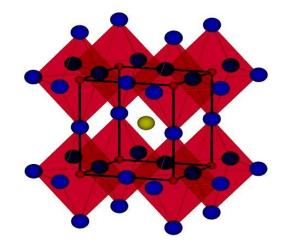
Energy gap ~ 0.6 eV ~ 7000 K



Mott-Hubbard-Insulators LaMO₃

 $M = Cu, Ni: 3d^8, 3d^7, Metal$ $M = Sc 3d^0, Band insulator$

M = Ti, V, Cr, Mn, Fe, Co,
3d partially filled (3d¹ – 3d⁶),
Mott-Hubbard insulators
Energy gap ~ 0.2 - 3 eV



Perowskit-structure (distorted) LaMO₃

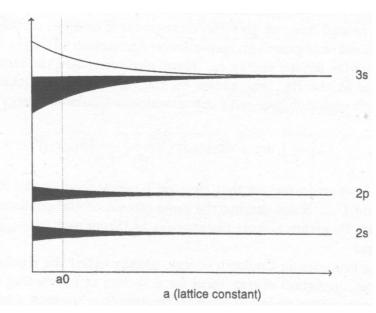
A closer look to "half filling" Gedankenexperiment

Consider a half-filled band, e.g. Na metal Na: 1 e in 3s shell with 2 states per atom (spin \downarrow)

> Metallic for any interatomic distance? (expected from the band theory)

Obviously not, for a very large distances we have individual atoms \longrightarrow insulating, not metallic state. The 3s band becomes very narrow, but its always half-filled!!

Question: what suppresses the transfer of an electron from one atom to another atom?



Explanation

small distances: electrons are smeared out (large bandwidth, W), charge fluctuations do not alter the average occupation (k-space picture)

large distances: electronic transition yields Na+&Na- \longrightarrow 2 e in same orbital \longrightarrow large on-site Coulomb repulsion U (local picture)

Competion between kinetic energy and on-site energy U determines the nature of the ground state

> Metallic state: if W >> U Insulating state : If U >> W

In SCES: Coulomb repulsion between 2 electrons at the same atom must be taken into account beyond one electron approximation.

Dealing with electron-electron correlations

Hubbard model

simplest (!) microscopic Model for correlated electrons (1963) introduced at the same time by Gutzwiller, Hubbard und Kanamori

- (a) kinetic energy: electron hopping between next nearest neighbors
- (b) Interaction only between electrons at the same site:

on-site e-e-repulsion = Hubbard UHamiltonian in 2nd quantization:

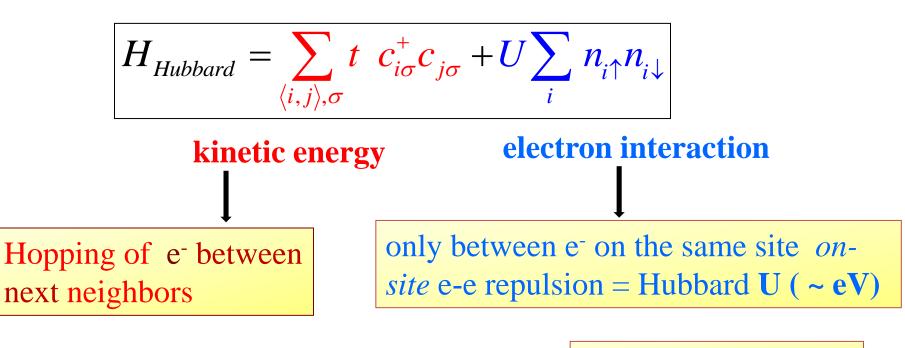
$$H_{Hubbard} = \sum_{\langle i,j\rangle,\sigma} t \ c_{i\sigma}^{+} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

 $\langle i, j \rangle$ next nearest neighbors site $C_{i\sigma}^+$, $C_{i\sigma}^-$ creation, annihilation operators of an occupied electronic state at site i with spin σ

 $c_{i\sigma}^{+}c_{i\sigma}$ Electron hops from j to i without spin flip

 $n_{i\uparrow}n_{i\downarrow}$ counts doubly occupied sites ($n_{i\uparrow} = c_{i\uparrow}^+ c_{i\uparrow}^-$, number operator)

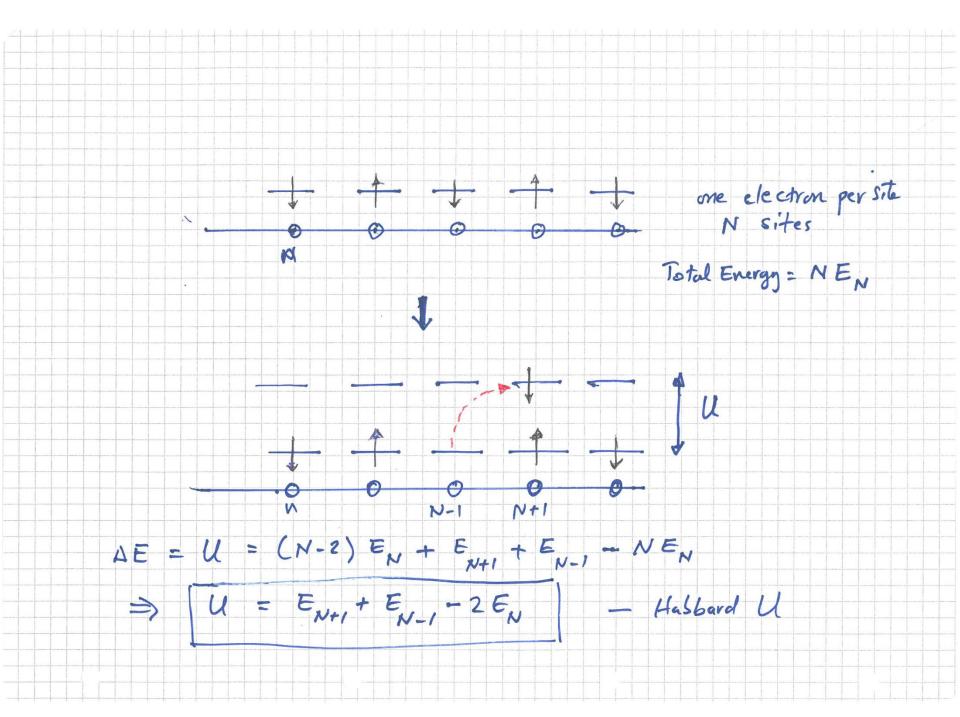
Hubbard model



Hopping matrix element *t* large =strong intersite overlap, large W

Hubbard *U* punishes double occpancy

U wants to localize t rewards delocalization see Board!



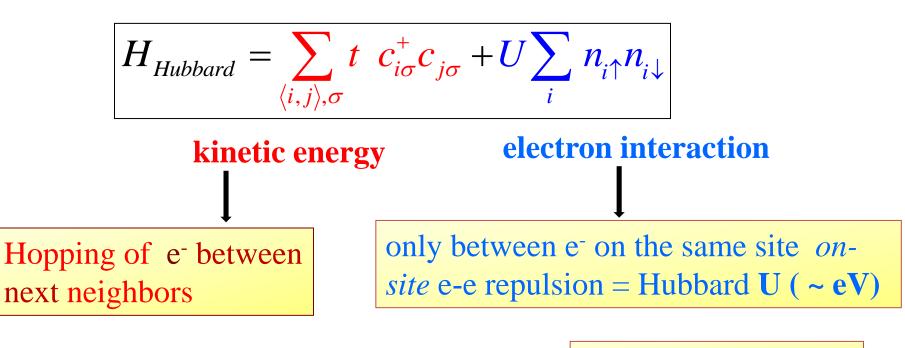
Hubbard model describes two opposite limits: (a) weak interactions electrons => U (K t; and (b) Strongly interacting, or strongly correlated electrons => U>>t (a) UKt => tight-binding approximation (U~0) Hubbard ~ t Z Ct C. Hubbard (i,j) o is jo $\Rightarrow E(k) = 2t \cos(k_{\pm}a) - 2ty \cos(k_{\pm}b) + \cdots$ (see eqs. B) or in 1D $E(k) = -2t \cos k_{x}a$ (egs. B')

(b) U>>t Collection of isolated atoms; each has 4 electronic many body states:

State IN, S', Sz >	total nº. of electrons	total spin SI	
0,0,07=107	0	0	
11, 2, 17= 0, 107	1	1/2	
11, 12, 17 = cillor	1	1/2	
$ 2,0,0\rangle = c_{i1}^{\dagger} c_{i1}^{\dagger} 0\rangle$		0	

.

Hubbard model



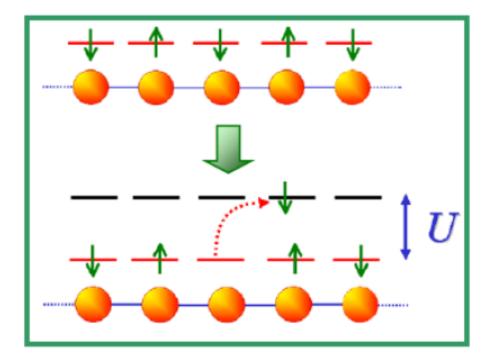
Hopping matrix element *t* large =strong intersite overlap, large W

Hubbard *U* punishes double occpancy

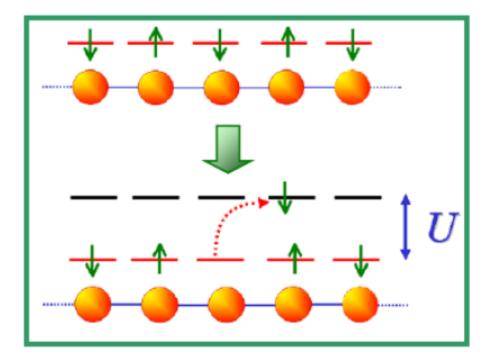
U wants to localize t rewards delocalization

calculation of Hubbard U

Simple case: one electron per site (half band filling)



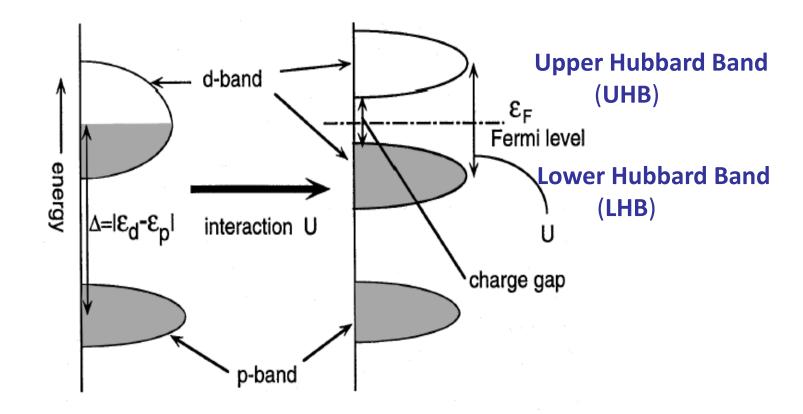
Coulomb repulsion between electrons causes localization



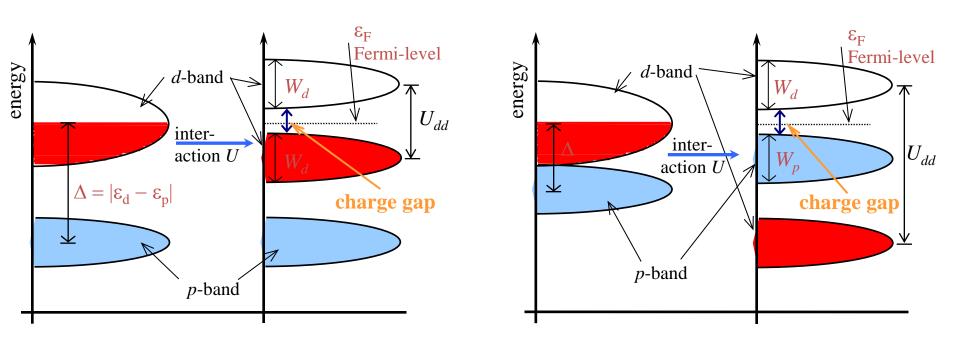
$$U = E_{N+1} + E_{N-1}$$
$$-2E_N$$

when the intersite interaction and (thus W) is small Coulomb repulsion drives a half-filled band insulating, with Mott-Hubbard gap (U) **Energy band splitting**

Double occupation costs energy (U) splitting of the energy band into Upper and Lower Hubbard bands



Types of Mott-Insulators

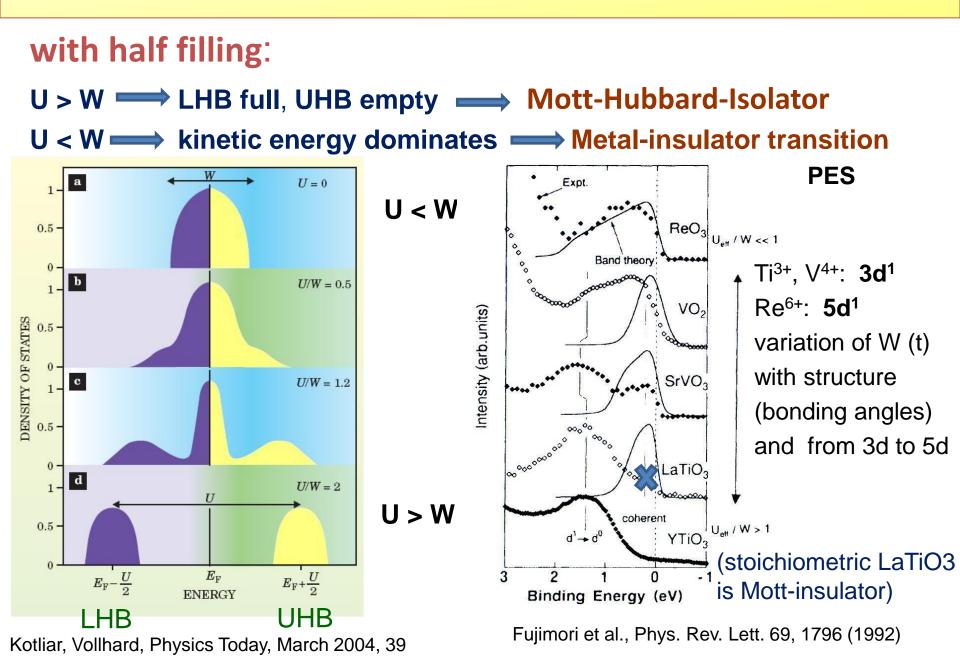


(a) Mott-Hubbard insulator:

(b) Charge-transfer insulator:

LaMO3 for M = Co, Fe U, on-site Coulomb interaction
Δ, charge transfer energy
W, bandwidth; (hopping t)

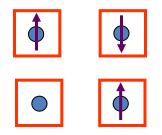
LaMO3 for M = Ti, V

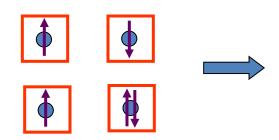


Metal-Insulator-transition : Doping

2) Metal-Insulator transition as a function of doping

e.g.: replace La³⁺ (or Y³⁺) by Sr²⁺ (or Ca²⁺) \longrightarrow hole-doping





Doping Mott-insulator Induced a metallic, superconducting state

e.g. La_{2-x}Sr_xCuO4

Hoping of a doped hole costs no energy

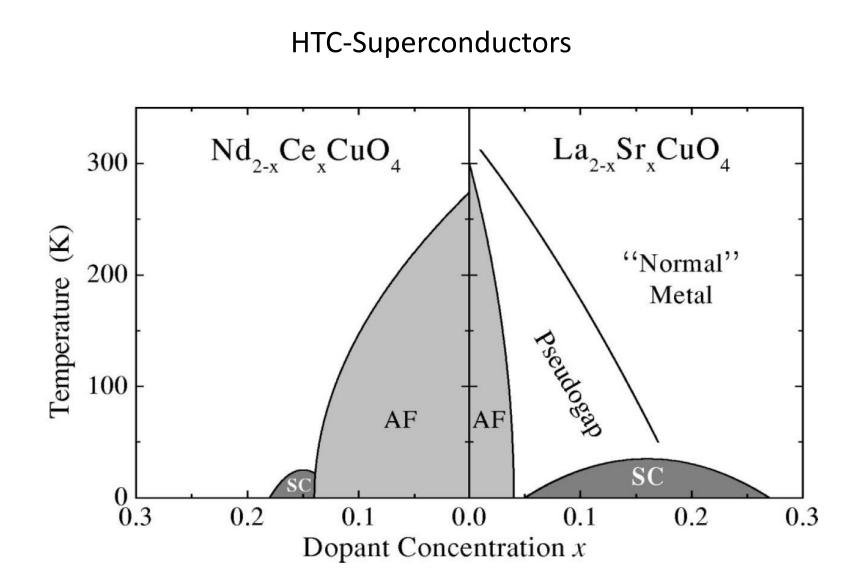
Hoping of a doped

electron costs no energy

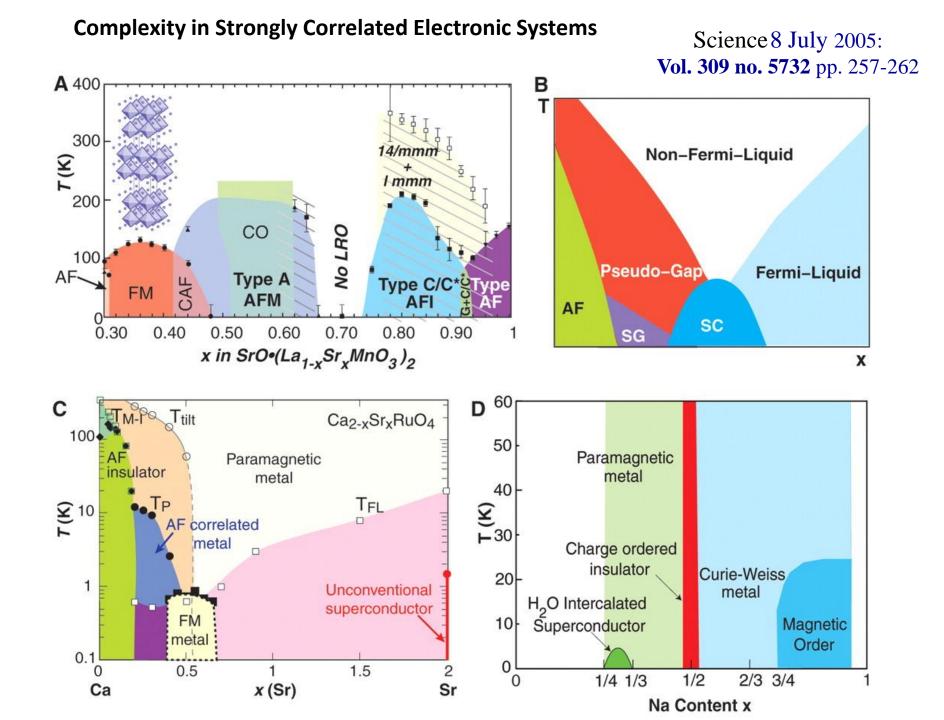
Uchida et al, PRB 43, 7942 (91)

More later

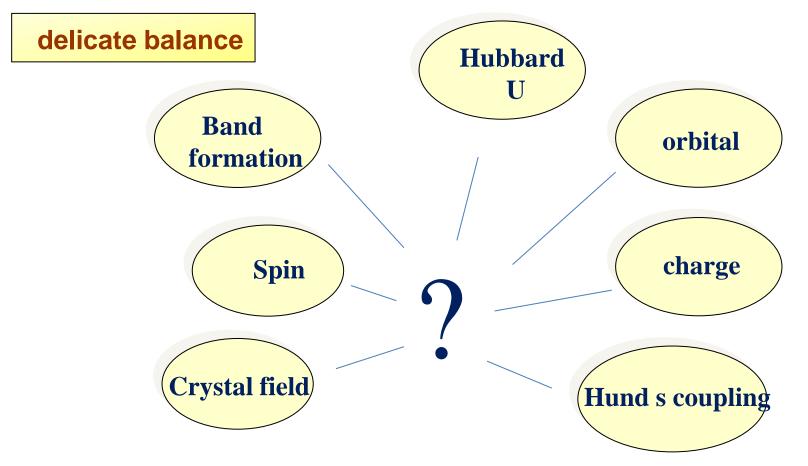
doped Mott-insulators



A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)



Transition metal systems and electron correlations



Systems can be quite close to the borderline U~ W (t)

Thus many interesting transitions can occur by changing T, P, filling, structure, etc

more discussion with examples later!