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II. Classes of strongly correlated electron systems 
 

(a) Transition metal compounds: 3d-electrons  

      - Hubbard model, Mott insulator, metal-insulator transition 

      - Spin, charge, and orbital degrees of freedom and ordering phenomena, selected materials 

 

(b) Heavy fermion systems: 4f (5f) – electrons 

     - The Kondo effect, heavy fermion systems, non-Fermi liquid behavior,  

     - Quantum phase transitions, unconventional superconductivity, selected materials 

 

(c) Nanoscale structures: 

     - Quantum confinement, unusual properties for potential applications 

 

III. Pressure effect on the ground state properties: 
    - Recent experimental results on heavy fermions and transition metal compounds  

 

IV. Summary and open discussion  

      

I. Introduction 

   Brief summary of electrons in solids, origin of strong electron correlations 

Introduction to strongly correlated electron systems  



 

 
Some comments on electrons in Solids: 

 

 Theoretical description using two different approachs/ approximations  

without taking into account electon-electron correlations: 

 

- The nearly-free electron model (itinerant electrons in very weak periodic 

potential) 

 

- The tight-binding model (electrons localized on an atomic site but weakly 

coupled  to all other atoms----use Linear Combination of Atomic Orbitals, 

LCAO) 

 

Both models qualitatively yield the same results and are well known to most of 

you in details from the lectures on Solid State Physics by Prof.  M. Grüninger 

and Pd Dr. T. Lorenz .  

 

To remind you, I just will go briefly through the two models and stress on some 

relevant points! 



the electrons move in a constant electrostatic potential U within the 

crystal. All the details of the crystal structure is lost when this 

assumption is made. Consider a metal with a shape of cube with edge 

length of L, Ψ and E can be found by solving Schrödinger equation: 
 

Free electron model: 
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The solutions are plane waves 

Normalization constant 

where V is the volume of the cube, V=L3 
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• The wave function Ψ(x,y,z) corresponds to an energy of 
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 periodic boundary conditions only allow discrete wave vectors:  

Consequence:  

We obtain discrete wave vectors and discrete energies 
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Quantized electronic states in the k-space 
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density of states in k-space is: 

Density of states in k-space 

Number of states  per volume in k-space 
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k-space 
two possible electron states,  spin up and spin down 



Density of States in energy space  

We often need to know the density of electron states, which is the 

number of states per unit energy: 
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Now using the 

general relation: 
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The differential number of 

electron states in a range of 

energy dE or wavevector dk is: 

This allows: 
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Density of States in energy space  

occupied 

states  
unoccupied 

states  



Ground state of the free electron gas (T=0) 

• Electrons are fermions (s=±1/2) and obey Pauli exclusion 
principle; each state can accommodate only one electron. 

 

• The lowest-energy state of N free electrons is therefore 
obtained by filling the N states of lowest energy. 



• Thus all states are filled up to an energy EF, Fermi energy, 

obtained by integrating density of states between 0 and EF 

should equal  N. Hence 

 

 

 

 

 

Solve for EF (Fermi energy); 
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Fermi surface 
at E=EF 

The occupied states are inside the Fermi sphere in k-space , 

the radius is Fermi wave number kF.  
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Density of states at the Fermi level 











FBF

F
TK

N

E

N
ED

2

3

2

3
)(

2/3
2 23

2
F

N
E

m V

 
  

 

This is the most important quantity, as it is related to all the physical properties 
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0E ! 
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Fermi-Dirac distribution Function at T=0 and at a finite temperatures 
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At a temperature T the probability of occupation of an electron state of 
energy E is given by the Fermi-Dirac distribution function: 
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)( FEEf  = ½ for all T  

only electrons with energies within ~  

of        will be able to contribute to thermal  

processes, transport etc.  

Note that: T/TF     T/TF ~ 10-2!  
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Specific heat of free electron gas  

so at temperature T the 

total energy is: 
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and the electronic heat 

capacity is: 
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The heat capacity of a metal has two contributions. For a metal at low 

temperatures we can write the total heat capacity: 

total heat capacity at very low temperatures 
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conduction electrons per formula unit 

per mole:  
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The effective mass of electrons and density of states 
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N0  Avogadro s number and  z number of 

conduction electrons per formula unit 

For free electrons        calculated  per mole:  
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  R is a Bravais lattice vector! 
 
 

 

… where            is a function with the 
periodicity of the lattice …. 

 

Bloch’s theorem tells us that eigenstates have 
the form  
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Energy eigenvalues  Band structure!       

Bloch theorem for non-interacting  

electrons in a periodic potential 

 

gap 
conduction band 

valence band 



Some  comments to the effective mass of electrons 



The effective mass of Bloch electrons 

Heavy effective mass implies high density of 

states D(E) and high       and vice versa            
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heavy-mass band  

light-mass band  

The motion of electrons is modified by the crystal potential through which it moves  

Electrons in a crystal are accelerated in 

response to an external force just as though 

they were free electrons with effective mass  m
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The effective mass of electrons and density of states 
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comparison of        with experimental      values 

and the effective mass  
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mainly s-electrons, 

broad bands   
partially filled d-bands  heavy fermion compounds 4 f (5f)-

orbitals  strong electron-electron 

correlations SCES 
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Why 
m

m

is so large in some 4f and 5f  electron system? 

No answer from the band theory (one electron approximation), 

neglecting electron-electron interactions. This will be discussed in  Chapter II (b). 



Effective mass of localized and extended  

density of states (see Board!) 



(e 

J. H. Shim, KH, and G. Kotliar  

Science 318, 1618 (2007). 

a large value of the Sommerfeld 

coefficient indicates that heavy 

fermion materials have a high 

density of states at the Fermi Energy. 



 

 
Some comments on electrons in Solids: 

 

 Theoretical description using two different approachs/ approximations  

without taking into account electon-electron correlations: 

 

- The nearly-free electron model (itinerant electrons in very weak periodic 

potential) 

 

- The tight-binding model (electrons localized on an atomic site but weakly 

coupled  to all other atoms----use Linear Combination of Atomic Orbitals, 

LCAO) 

 

Both models qualitatively yield the same results and are well known to most of 

you from the lectures on Solid State Physics by Prof.  M. Grüninger and Pd Dr. 

T. Lorenz. 

 

To remind you, I just will go briefly through the two models and stress on some 

relevant points! 



The full Hamiltonian of the system is approximated by using 
the Hamiltonians of isolated atoms, each one centered at a 
lattice point. 

 

The eigenfunctions are assumed to have amplitudes that go to 
zero as distances approach the lattice constant. 

 

The assumption is that any necessary corrections to the atomic 
potential will be small. 

 

The solution to the Schrodinger equation for this type of single 
electron system, which is time-independent, is assumed to be a 
linear combination of atomic orbitals.  

The tight-binding model 

Basic idea:  



Now see Board! 















Electron Density of States: LCAO 

bcc 

tungsten 




