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Introduction to strongly correlated electron systems

l. Introduction
Brief summary of electrons in solids, origin of strong electron correlations

I1. Classes of strongly correlated electron systems

(a) Transition metal compounds: 3d-electrons
- Hubbard model, Mott insulator, metal-insulator transition
- Spin, charge, and orbital degrees of freedom and ordering phenomena, selected materials

(b) Heavy fermion systems: 4f (5f) — electrons
- The Kondo effect, heavy fermion systems, non-Fermi liquid behavior,
- Quantum phase transitions, unconventional superconductivity, selected materials

(c) Nanoscale structures:
- Quantum confinement, unusual properties for potential applications

I11. Pressure effect on the ground state properties:
- Recent experimental results on heavy fermions and transition metal compounds

V. Summary and open discussion




Some comments on electrons in Solids:

Theoretical description using two different approachs/ approximations
without taking into account electon-electron correlations:

- The nearly-free electron model (itinerant electrons in very weak periodic
potential)

- The tight-binding model (electrons localized on an atomic site but weakly
coupled to all other atoms----use Linear Combination of Atomic Orbitals,
LCAO)

Both models qualitatively yield the same results and are well known to most of
you in details from the lectures on Solid State Physics by Prof. M. Grlninger
and Pd Dr. T. Lorenz .

To remind you, | just will go briefly through the two models and stress on some
relevant points!



Free electron model:

the electrons move in a constant electrostatic potential U within the
crystal. All the details of the crystal structure is lost when this
assumption is made. Consider a metal with a shape of cube with edge
length of L, ¥ and E can be found by solving Schrédinger equation:
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periodic boundary conditions:  w(X+L,y+L,z+L)=w(X,Y,2)
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* The wave function W¥(X,y,z) corresponds to an energy of

21,2 2
AL — _h (k +k,* +k,°)
2m
and momentum p="n(k, y,kz)

periodic boundary conditions only allow discrete wave vectors:

27m
K = 27m, K, =y = 27m,
L L L

n,n,n, =0+ +£2,+3,...

Consequence:
We obtain discrete wave vectors and discrete energies



Quantized electronic states in the k-space
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Density of states in k-space D(k)

Number of states per volume in k-space

3
volume in k-space Is (—j

==) density of states in k-space Is:

R

two possible electron states, spin up and spin down

T~

2 V
D(k) = —
(k) (27[/ L)3 473

k-space



Density of States In energy space D(E)

We often need to know the density of electron states, which is the
number of states per unit energy:

The differential number of

electron states in a range of dN = D(E)dE = D(k)dk
energy dE or wavevector dkK is:

dk DK) V/4r® mv

This allows: D(E) =D(k — — —
(E) ()dE dE/dk A°k/m RK*4r’k

Now using the 2mE }'? _ Vv (2mY"?
general relation: k=(—h2 j we get. D(E)—Zﬂz 2 JE




Density of States In energy space
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Ground state of the free electron gas (T=0)

« Electrons are fermions (s=+1/2) and obey Pauli exclusion
principle; each state can accommodate only one electron.

 The lowest-energy state of N free electrons is therefore
obtained by filling the N states of lowest energy.



* Thus all states are filled up to an energy E., Fermi energy,
obtained by integrating density of states between 0 and E:
should equal N. Hence

v o(2m)?_, K, Fermi surface
D(E) — 272'2 (hg ) E at E=EF
E E 3/2
- -V (2m
N = |D(E)d(E) = ( j EY?d(E)
-(‘). -([2722 h*

Solve for E- (Fermi energy);

EF

7 (32N
.

The occupied states are inside the Fermi sphere in k-space ,
the radius is Fermi wave number K.



Density of states at the Fermi level D(E;)

This is the most important quantity, as it is related to all the physical properties

vV (om\¥? » 12 (272N 2/3
D(E.) = E i _
(Er) 272 (hz ) F with E. = Zm( v )

3N 3( N
mm) DE)="_— =1
2E, 2\ K,T.

Energy per electron _ 3
inthe ground state  mmm) |E=—FE. =—K;T;
Fermi gas T=0 5

Compare with classical gas at E="K.T ‘ E—>O0!
T=0 2 °




Fermi-Dirac distribution Function at T=0 and at a finite temperatures

At a temperature T the probability of occupation of an electron state of
energy E is given by the Fermi-Dirac distribution function:

1
f(E)= oEEe)ksT _q
F(E) KgT
-— T=0: f(E)=1 for E<E;
=0 for E>E,
1 f(E=E;.)=%forall T
0.5

only electrons with energies within ~ KT
of E. will be able to contribute to thermal
processes, transport etc.

Note that: /T, T/T.~ 102!




Specific heat of free electron gas

so at temperature T the g _ T £ (E)D(E) dE :T (E_EED)/(E) dE
total energy is: 7 cen e ]

and the electronicheat | dE

1
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7| is Sommerfeld coefficient of the heat capacity; |C, oc T and oc D(E.)

The equation for C,; is also valid for electrons in periodic potential using corresponding D(E.)

3N 3N 2m
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The heat capacity of a metal has two contributions. For a metal at low
temperatures we can write the total heat capacity:

C(M)=C,+C

lattice

=T +al®

total heat capacity at very low temperatures
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per mole:
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Viree =737 N8 k7 72(372N V)23 conduction electrons per formula unit




The effective mass of electrons and density of states

vV (2m\** 1/2 2
D(EF):2 ( j E. Clz?kB D(E.)T =T . hence |yocm

2 2 e
7\ h

For free electrons ' calculated per mole:

v :7z_2k2 D(E, ) = ﬂzkémNOZ NO Avogadro s number and Z number of
T3 BTN T h2(3422N V)3 | conduction electrons per formula unit




Bloch theorem for non-interacting
electrons in a periodic potential

2

V() +U () = Ev ()
m

U(r)=U(r+R)

R is a Bravais lattice vector!

... where Ugr?] Is a function with the
periodicity of the lattice ..

GaAs

Bloch’s theorem tells us that eigenstates have
the form

w(r)=e*"u(r)

Energy eigenvalues E, (k) Band structure!




Some comments to the effective mass of electrons



The effective mass of Bloch electrons

The motion of electrons is modified by the crystal potential through which it moves

) -1
* _ 1 d°E 1/ curvature of the band is proportional to m”
o)  —
Heavy effective mass implies high density of N
states D(E) and high 7 and vice versa ) ‘g light-mass band
"e : :
E L

Electrons in a crystal are accelerated in
response to an external force just as though
they were free electrons with effective mass m*

o
=

' heavy-ma

k (arbitrary units)

ss band



The effective mass of electrons and density of states

vV (2m\** 1/2 7t 2
D(EF):2 ( j E. CIZ?kB D(E.)T =T . hence |yocm

2 2 e
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For free electrons ' calculated per mole:

v :7z_2k2 D(E, ) = ﬂzkémNOZ NO Avogadro s number and Z number of
T3 BTN T h2(3422N V)3 | conduction electrons per formula unit




comparison of y, with experimental » values

%k

m
m oy
Metal ¥ “Yth Metal ¥ Metal Y =
Li 1.63 0.749 Fe 5.0 CeAl; 1600 m 7/th
Na 1.38 1.094 Co 4.7 CeCug 1500
K 2.08 1.668 Ni 7.1 CeCuaSia 1100
Cu 0.69 0.505 La 10 CeNiaSna 600
Ag 0.64 0.645 Ce 21 UBei3 1100
Au 0.69 0.642 Er 13 UsZnq7 500
Al 135 0.912 Pt 6.8 YbBiPt 8000
Ga 0.60 1.025 Mn 14 PrinAg, 6500
vy, =1-15 v !y, ~10-30 y ! ¥y, =100-1000
mainly s-electrons, : - _ .
y partially filled d-bands | heayy fermion compounds 4 f (5f)-
broad bands .
orbitals strong electron-electron
correlations SCES

Why m" isso large in some 4f and 5f electron system?

No answer from the band theory (one electron approximation),
neglecting electron-electron interactions. This will be discussed in Chapter 11 (b).



Effective mass of localized and extended
density of states (see Board!)



a | —T=10K
—T=300K

=

a large value of the Sommerfeld
coefficient indicates that heavy
fermion materials have a high
density of states at the Fermi Energy.

Ce 4f DOS (states/eV)
N

A

J. H. Shim, KH, and G. Kotliar
Science 318, 1618 (2007).



Some comments on electrons in Solids:

Theoretical description using two different approachs/ approximations
without taking into account electon-electron correlations:

- The nearly-free electron model (itinerant electrons in very weak periodic
potential)

- The tight-binding model (electrons localized on an atomic site but weakly
coupled to all other atoms----use Linear Combination of Atomic Orbitals,
LCAO)

Both models qualitatively yield the same results and are well known to most of
you from the lectures on Solid State Physics by Prof. M. Grininger and Pd Dr.
T. Lorenz.

To remind you, | just will go briefly through the two models and stress on some
relevant points!



The tight-binding model

Basic idea:

The full Hamiltonian of the system is approximated by using
the Hamiltonians of isolated atoms, each one centered at a
lattice point.

The eigenfunctions are assumed to have amplitudes that go to
zero as distances approach the lattice constant.

The assumption is that any necessary corrections to the atomic
potential will be small.

The solution to the Schrodinger equation for this type of single
electron system, which is time-independent, is assumed to be a
linear combination of atomic orbitals.



Now see Board!
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Electron Density of States: LCAO
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