Untersuchung des Metall-Isolator-Übergangs durch Rastertunnelmikroskopie (STM) und Rastertunnelspektroskopie (STS)

Vortragender: Andreas Janssen Betreuer: Prof. Michely

Übersicht

- Rastertunnelmikroskopie (STM)
 - Prinzip
- Rastertunnelspektroskopie (STS)
 - Prinzip
 - Punktspektroskopie
 - Beispiel: Quantenkäfig
 - Anwendung beim Metall-Isolator-Übergang
 - Spektroskopie
- Beispiele
 - LCMO (Manganat)
 - BCMO (Manganat)
 - Indiumketten auf Si(111) Oberfläche

Schemaskizze STM

- Bias-Spannung
- Tunnelstrom
 - Regelgröße
- Piezoröhrchen positioniert die Spitze
- Spannung am z-Piezo Element
 - Messgröße

Si(111) 7x7 Überstruktur

Schemaskizze STS

- 1 dimensionaler Fall
- Potentialbarriere (Austrittsarbeit)
- Wellenfunktionen exponentiell gedämpft
- Tunnelstrom für X= 4-8 Angström

- Nettostrom
 - Elektronen von 0 bis eU
- Elektronen höherer Energie
 - höhere Tunnelwahrscheinlichkeit
 - kleinere Barriere durchtunneln

Schemaskizze STS

- Tunnelstrom ist abhängig von
 - Tunnelwahrscheinlichkeit
 - Zustandsdichte der Probe (DOS der Probe)
 - Zustandsdichte der Spitze (DOS der Spitze)

$$I \propto \int_{0}^{eU} \rho_{\text{Spitze}}(E) \rho_{\text{Probe}}(E) T(E, x) dE$$

- Änderung der Bias-Spannung
- Änderung des Stroms
 - Alte Zustände größere Tunnelwahrscheinlichkeit
 - Neue Zustände tunneln

- Annahmen
 - Glatte Spitzen DOS
 - Tunnelterm vernachlässigbar
 - Minimiere ΔU $\frac{dI}{dU} \propto \rho_{Probe} (E_F - eU)$ Tersoff-Hamann-Näherung

Punktspektroskopie

Quantenkäfig

Ring aus 60 Eisen Adatomen auf Cu(111) Oberfläche.

- 2-dimensionales Elektronengas
- Zugabe von Adatomen
 - Unendliche hohe Potenzialbarriere
- Radialsymmetrischer Potenzialtopf
 - Stehende Wellen
 - Diskrete Energieniveaus

Metall-Isolator-Übergang mit STS

Metall

Isolator

Metall-Isolator-Übergang mit STS

Spektroskopie

 $\mathbf{U} = \mathbf{U}_0 + \mathbf{U}_1 \sin(\omega t)$

- Lock-In-Technik
 - dl/dU bei U_0
- Frequenz > Regelkreisgrenzfrequenz
- STM Betrieb vereinbar.
 - Mit geschlossener Regelschleife

$La_{0.7}Ca_{0.3}MnO_{3}$

M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, J. A. Mydosh Science Vol 285 1999

$La_{0.7}Ca_{0.3}MnO_{3}$

graduellen Übergang 10¹ Metall 8 dl/dU 10^{-1} [nS] [nA] Isolator 4 10^{-3} 0 2 0 4 Bias-Spannung [V]

Punktspektren

beide Phasen

٠

- dl/dU bei 3V
 - Nahe Metall-Isolator-Übergangs
 - verschiedenen äußeren Feldern
 - selbe Fläche

T=5

Metall

Isolator

- Phasenkoexistenz
- Durchflussmodel (percolation)

T=9

M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, J. A. Mydosh Science Vol 285 1999

$La_{0.7}Ca_{0.3}MnO_{3}$

M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, J. A. Mydosh Science Vol 285 1999

$Bi_{0.24}Ca_{0.76}MnO_3$

- Manganat (Perowskit)
- Ladungsordnung der Mn-Atome unterhalb 250K
 - Verdoppelung der Einheitszelle
 - Metall-Isolator-Übergang

Ch Renner, G. Aeppli, B.-G. Kim, Yeong-Ah Soh & S.-W. Cheong Nature Vol 416 2002

$Bi_{0.24}Ca_{0.76}MnO_3$

Ch Renner, G. Aeppli, B.-G. Kim, Yeong-Ah Soh & S.-W. Cheong Nature Vol 416 2002

$Bi_{0.24}Ca_{0.76}MnO_3$

STM-Bild bei 146 K

- Entlang Kristallachsen
 - Ladungsordnung
 - Verschiedene O-Atom Abstände

- Struktur nicht identisch mit isolierender Phase bei 299K.
 - Geneigte
 Oktaeder
 - Zick-Zack-Struktur
 - stabilisieren
 Ladungsordnung

Struktur bei 146 K

Ch Renner, G. Aeppli, B.-G. Kim, Yeong-Ah Soh & S.-W. Cheong Nature Vol 416 2002

Indiumketten auf Si(111)

S. J. Park, H. W. Yeom, S. H. Min, D. H. Park, I.-W. Lyo Physical Review Letters 2004 (106402)

Indiumketten auf Si(111)

IndiumSilizium

S. J. Park, H. W. Yeom, S. H. Min, D. H. Park, I.-W. Lyo Physical Review Letters 2004 (106402)

Zusammenfassung

- Atomare Auflösung mit STM
- Beobachtung der DOS mit STS
- Makroskopische und mikroskopische Effekte.
 - Metall-Isolator-Übergang
 - Phasenkoexistenz (Durchflussmodel)
 - Ladungs-Dichte-Welle
- Elektronische Eigenschaften und Struktur.
 - Ladungsordnung
 - Doppelte Einheitszelle
 - Metall-Isolator-Übergang