Druckinduzierte Metall - Isolator Übergänge

Vortrag Oberseminar WS 2007/2008

im 2. Physikalischen Institut der Universität zu Köln

Martin Hiertz

Druckinduzierte Metall - Isolator Übergänge

- 1. Wieso Hochdruck? Druckerzeugung
- 2. Warum sind Übergangsmetalloxide für Hochdruck-Experimente interessant?
- 3. Beispiele für die druckinduzierten Metall -Isolator Übergänge:
 - *R*NiO₃
 - $La_{1-x}Sr_xCoO_3$
- 4. Zusammenfassung

Warum Druckabhängigkeit messen?

Externer Druck (P) ist eine thermodynamische Variable wie Temperatur (T) und externes Magnetfeld (B), die den Gleichgewichtszustand eines Systems ändern

Einheiten:1 bar \approx 1 atm = 10⁵ N/m²; 10 kbar = 1 GPa;1 Mbar = 100 GPa; 1 Mbar \cong 1 eV/Å³

Druckeffekte

 Abnahme atomarer Abstände (Volumen) ⇒ Zunahme des Überlapps der Orbitale ⇒ Modifizierung der Austauschwechselwirkung

2) Information:

Stabilität von elektronischen und magnetischen Zuständen in der Nähe des Phasenübergangs:

zB: Metall ⇔ Isolator; magnetisch ⇔ unmagnetisch; Struktureller Phasenübergang

3) Vergleich mit relevanten theoretischen Modellen

- besseres Verständnis der Mechanismen
- kritische Überprüfung von theoretischen Modellen

Druckerzeugung???

Hochdruck Technik

Diamond Anvil Cell (DAC)

Probenraum $\emptyset \approx 100 \ \mu m$

Druckbestimmung mittels Ruby Fluoreszenz (Ruby = Al_2O_3 dotiert mit Cr³⁺)

Hochdruck Technik

Großvolumige Zelle

Warum nun Hochdruck Untersuchungen an Übergangsmetalloxiden (AMO₃)?

- ⇒ Kontrollierte Reduktion der Atomabstände ohne chemische Veränderung (zB Dotierung)
- ⇒ Orbitale angrenzender Elektronen haben größeren Überlapp (zB: O-2p und 3d-Orbitale)
- ⇒ Änderung der Bindungslänge (M-O) und -winkel (M-O-M), Vergrößern der 3d-Bandbreite; Änderung der Besetzungszahlen
- ⇒ Änderung der Austauschwechselwirkung
 ⇒ Phasenübergang: elektronisch, magnetisch, strukturell ??

große druckinduzierte Effekte bei Übergangsmetalloxiden hervorgerufen durch starke elektronische Korrelationen!

Struktur: verzerrter Perovskit

Phasendiagramm für Manganate

H. Y. Hwang et al. PRB 52, 15046 (1995)

Korrelierte Oxide Spin-, Ladungsund Orbitalfreiheitsgrade

Spin-, Ladungs- und Orbitalfreiheitsgrade über das Gitter miteinander verknüpft

Äußerer Druck beeinflusst das Zusammenspiel dieser drei Freiheitsgrade

ermöglicht Untersuchung der Ursachen des Metall-Isolator Übergangs

Ausgewählte Systeme

Untersuchung der Ursachen des Metall-Isolator Übergangs

Mott - Isolator mit Ladungsfreiheitsgrad

 $(R = La \quad Lu)$

$RNiO_3$ Perovskit (R = seltene Erden 3+ Ion: La Lu)

Grundlegende Eigenschaften:

- Ni³⁺: $t_{2g}^{6} e_{g}^{(1)}$, low spin (S = ½) Zustand JT-aktiv, aber keine JT Verzerrung **Orbital entartetes System**

- alle seltene Erden ($R \neq La$) sind Isolatoren mit sehr kleinen Energielücken ($\Delta \sim 100 \text{ meV}$).

Der Metall-Isolator Übergang kann durch die Größe der R³⁺-Ionen (chemischer Druck) oder die Temperatur beeinflusst werden.

- isolierender Grundzustand ist ladungsgeordnet
- Grundzustand ($R \neq La$): antiferromagnetischer Isolator

*R*NiO₃ Phasendiagramm

Temperaturinduzierter Isolator - Metall Übergang Verbunden mit:

- Struktureller Phasenübergang / Ladungsordnung
- Crossover vom isolierend-mangetischen zum metallisch-unmagnetischen Zustand!

Struktur der *R*NiO₃

Untersuchte Systeme für Hochdruckmessungen

SmNiO₃ und LuNiO₃

Tolerance Factor

QCP

Ergebnis: Druckinduzierter Isolator-Metall Übergang

Elektrischer Widerstand: (in einer Diamond Anvil Cell (DAC) gemessen)

Stabilität der Struktur:

- keine Strukturänderung beim Metall-Isolator Übergang
- keine Strukturanomalie!
- Strukturänderung von Monoklin Orthorhombisch bei 16 GPa

Druckabhängigkeit der RNiO₃ Bindungswinkel

θ für kleine RNiO₃ entfernt von θ_{critical}
 Bindungswinkeländerung
 verursacht nicht den Isolator - Metall Übergang

Bindungslänge

hoch auflösende Pulver Neutronen Diffraktionsmessungen an LuNiO₃ von ISIS (Oxford)

Die Bindungslänge der (Ni1O6)- und (Ni2O6)- Oktaeder ändern sich unterschiedlich monoklinische Symmetrie bleibt erhalten

Vorschlag für das Phasendiagramm von LuNiO₃

I.I. Mazin, et al., PRL (2007)

Das System bleibt ladungsgeordnet im metallisch-magnetischem Zustand \rightarrow neuer Zwischenzustand?

Theoretische Berechnungen

Beschreibung mit LDA besser als mit LDA+U \rightarrow schwache Korrelation!

Lückengröße und die Druckabhängigkeit stimmt mit den Experimenten überein!

Zusammenfassung für RNiO₃

<u>Theorie und Experiment \rightarrow physikalisches Bild:</u>

 $RNiO_3$ sind keine "richtigen" Mott Isolatoren, sondern eher in einem Crossover Regime nah der itineranten Seite \rightarrow Band Isolatoren (große Bandbreite)!

Konsequenzen:

- 1. Aufhebung der Orbitalen Entartung durch Ladungsordnung ist günstiger als JT Verzerrung
- 2. unter Druck, wird diese Bandlücke kleiner und die Ladungsordnung ändert sich nicht wesentlich, so bleibt das System ladungsgeordnet im metallischen Zustand

 $La_{1-x}Sr_{x}CoO_{3}$

⇒ Übergangsmetalloxid (Perovskit Struktur) mit Spinfreiheitsgrad

La_{1-x}Sr_xCoO₃ rhomboedrisch verzerrte Perovskit Struktur

LaCoO₃: (undotiert)

- Co^{3+} , $3d^6$, Low-Spin (LS) Zustand (S = 0)
- Grundzustand: unmagnetisch, isolierend
- Spinzustand temperaturabhängig (T ~ 100K)
- Temperaturabhängiger Isolator-Metall Übergang (T ~ 500K)

<u>La_{1-x}Sr_xCoO₃:</u> (dotiert)

- $Co^{3+} \rightarrow Co^{4+} (3d^5)$ erhöht die Ladung durch Sr²⁺ (Loch-) Dotierung
- Grundzustand: LS-Zustand ist unterdrückt: unmagnetisch → spin glass → x ≥ 0,18 ferromagnetisch
- Isolator-Metall Übergang bei $x \ge 0,18$
- rhomboedrische Verzerrung wächst mit x → Kubisch bei x ~ 0,50

Elektrische und magnetische Eigenschaften von $La_{1-x}Sr_xCoO_3$

elektrischer Widerstand

Phasendiagramm

Offene Fragen

Wie und in welchem Maße beeinflusst der Spinfreiheitsgrad den Isolator - Metall Übergang?

besseres Verständnis von Zusammenhang zwischen dem Isolator-Metall Übergang und dem Beginn der ferromagnetischen Ordnung

Experimente:

Einkristall $La_{0,82}Sr_{0,18}CoO_3$ nahe an der Isolator - Metall Grenze:

- elektrischer Widerstand
- Magnetisierung
- Röntgen Emissions Spektroskopie

Druckabhängigkeit des elektrischen Widerstands von La_{0.82}Sr_{0.18}CoO₃

Wie kann man so ein unterschiedliches Verhalten zu den bekannten

3d - korrelierten Systemen verstehen?

(1) Strukturänderungen durch Druck

Volumenänderung von La_{0,82}Sr_{0,18}CoO₃ als Funktion des Drucks

Bindungswinkeländerung von LaCoO₃ als Funktion des Drucks

(2) Änderung des Co³⁺ Spinzustands

Druckinduzierter IS LS Übergang!

Basierend auf zwei experimentellen Tatsachen:

- (a) <u>lonen Radius</u> von LS Co³⁺ (0,545 Å) ist kleiner als der von HS/IS Co³⁺ (0,61Å)
- (b) <u>Kristallfeldaufspaltung</u> (Δ_{CF}) von LaCoO₃ steigt mit Druckzunahme

magnetisch

unmagnetisch

kontinuierliche Entvölkerung des IS Zustands durch Druck

Unterdrückt Elektronen-Hopping und verringert T_C

Abnahme von μ_{Co} mit Druckzunahme wird erwartet!

Druckinduzierter IS LS Übergang Unterdrückung der Elektronenbeweglichkeit

Experimenteller Hinweis auf den HS/IS-LS Übergang

Magnetisierung bei Hochdruck:

Vermindert μ_{Co} von 1,11(1) μ_B bei Raumdruck zu 1,05(1) μ_B bei 1 GPa, bzw 5,4 % oder mindestens 30 % bei 5,7 GPa.

Mikroskopischer Hinweis für druckinduzierten HS/IS-LS Übergang

Mikroskopischer Hinweis für druckinduzierten HS/IS-LS Übergang

Kβ Röntgen Emissions Spektroskopie von $La_{1-x}Sr_xCoO_3$, x=18%, bei T=300K

R. Lengsdorf, et al., PRB (2007)

sukzessiver HS/IS LS Übergang

Mikroskopischer Hinweis für druckinduzierten HS/IS-LS Übergang

R. Lengsdorf, et al., PRB (2007)

integrated absolute difference (IAD)

sukzessiver Übergang von HS/IS zu LS Zustand mit zunehmendem Druck

Zusammenfassung La_{1-x}Sr_xCoO₃

 Entgegengesetzt zu den Ergebnissen der Übergangsmetalloxide (*R*NiO₃), finden wir mit ansteigendem Druck einen drastischen
 <u>Anstieg</u> des elektrischen Widerstands und eine <u>Reduzierung</u> von T_C

Ursache: Druckinduzierte Spinzustandsänderung

- v Experimenteller Hinweis: Magnetisierung μ_{Co} nimmt mit erhöhtem Druck ab
- Mikroskopischer Hinweis: Röntgen Emission Spektroskopie des IS/HS LS Übergangs

Druckinduzierter Metall - Isolator Übergang wird verursacht durch eine Änderung des Spinzustand der Co³⁺ Ionen

Zusammenfassung

Druckuntersuchungen ermöglichen es:

1) Informationen über den Phasenübergang zu erhalten
 2) Die Mechanismen gezielt zu beeinflussen

Völlig unterschiedliche Ursachen bei (La,Sr)CoO₃ und *R*NiO₃ rufen den Metall - Isolator Übergang hervor

Mott-Isolatoren

(a) Mott-Hubbard Isolator:

(b) Charge-transfer Isolator:

- U, on-site Coulomb interaction
 - Δ , charge transfer energy
 - *W*, bandwidth; (hopping t)

Druck ändert Bindungswinkel und Bindungslänge

