Magnetism in layered Ruthenates Oberseminar WS 2007/08

Universität zu Köln

▲ Ruddlesdon-Popper : n = 1,2, ... 3, 4, ...

Outline

- 1. superconducting Sr_2RuO_4
 - unconventional pairing
 - magnetic fluctuations
- 2. insulating Ca_2RuO_4
 - antiferromagnetism
 - role of orbital degrees of freedom
- 3. the phase diagram of $Ca_{2-x}Sr_{x}RuO_{4}$
 - strongly enhanced magnetic fluctuations
 - metamagnetism
- 4. double-layer materials : Ca_{3-x}Sr_xRu₂O₇
- 5. Conclusions

own work : collaboration with

- P. Steffens, O. Schumann, O. Friedt, M. Kriener, J. Baier, T. Lorenz . . .
- Y. Sidis, P. Bourges, A. Gukasov, . . .
- S. Nakatsuji & Y. Maeno

superconductivity in Sr₂RuO₄

Normal-State properties

Fermi-liquid

Für T < 30 K:

- Anisotropic 3 dim. metal
- $\Gamma = \rho_c / \rho_{ab} \sim 450 = const.$

at low temperatures

• $\rho(T) \sim T^2 \implies e^- - e^-$ -scattering

- Pauli-Paramagnetism S=1
- $c(T)=\gamma T+\beta T^3 \gamma=40 \text{mJ/(mol K^2)}$
- Wilson-Ratio $R_w = \text{const.} \chi/\gamma = 1.8$

impurity effect

- T_c extremely sensitive
- non-magnetic impurities
- defects Mao et al., PRB 1999

Verletzung der Zeit-Umkehr Invarianz

μ^+ -Spin Relaxation:

¹⁷O Knight Shift in Sr₂RuO₄

Spin-Susceptibility

Singlet 1 $\uparrow\downarrow$ Xs/XN s-wave d-wave 0 1 0 T/T_{c} Triplet p-wave $\uparrow\uparrow$ 1 H // ab Xs/XN H// c 0 1 0 T/Te

Ishida et al., Nature 1998

Sr₂RuO₄: spin-triplet superconductor with

p-wave symmetry

Cooper-Paar wavefunction: $\Psi(2,1) = -\Psi(1,2)$ antisymmetric for Fermions

	Spin-part	Orbital part
Singlet	$S_z = 0 \frac{1}{\sqrt{2}} \{ \uparrow\downarrow\rangle - \downarrow\uparrow\rangle\}$	L=0,2,(s,d,wave)
S=0 $\uparrow\downarrow$	antisymmetric	symmetric, even parity
Triplet	$S_z=1$ $ \uparrow\uparrow>$	L=1,3,(p,f,wave)
S=1 $\uparrow\uparrow$	$0 \qquad \frac{1}{\sqrt{2}} \{ \uparrow\downarrow\rangle + \downarrow\uparrow\rangle\}$	antisymmetric, odd parity
	-1 $ \downarrow\downarrow\rangle$ symmetric	

Quantum interference devices

Odd-Parity Superconductivity in Sr₂RuO₄ K. D. Nelson.¹ Z. O. Mao.^{1*} Y. Maeno.^{2,3} Y. Liu¹†

Phase-sensitive measurements were made on Sr_2RuO_4 to establish unambiguously the odd-parity pairing in this material. The critical current of $Au_{0.5}In_{0.5}-Sr_2RuO_4$ superconducting quantum interference devices prepared on Sr_2RuO_4 single crystals was found to be a maximum for devices with junctions on the same side of the crystal and a minimum for devices with junctions on opposite sides, in the limit of zero magnetic flux; these findings indicate that the phase of the superconducting order parameter in Sr_2RuO_4 changes by π under inversion. This result verifies the odd-parity pairing symmetry and the formation of spin-triplet Cooper pairs in Sr_2RuO_4 .

Fig. 1. (A) Schematic of $Au_{0.5}In_{0.5}$ -Sr₂RuO₄ GLB SQUID with measurement leads. Both junctions in the SQUID are in-plane tunnel junctions to ensure $j_s \neq 0$. The side insulated by the SiO layer may cross the *ab* plane as depicted (samples A and B) or cross a third face perpendicular to the *ab* plane (sample C). The shaded area indicates the flux penetration at T = 0, $\lambda_1 \approx 3.7 \ \mu\text{m}$, and $\lambda_2 \approx 0.18 \ \mu\text{m}$. For sample C, the flux penetration is to a depth of λ_2 on all three sides. The value of λ_f is not known but may be slightly larger than that of pure In, 0.07 μ m. For sample A, $w = 1.05 \ \text{mm}$,

h = 0.5 mm, and d = 0.33 mm; for sample B, w = 1.15 mm, h = 0.4 mm (left) and 0.6 mm (right), and d = 0.15 mm; for sample C, w = 0.68 mm, h = 0.3 mm, and d = 0.4 mm. The SiO layer thickness is 150 nm. (B) Equivalent circuit of the SQUID. I_a and I_b are the current on the left and the right side of the SQUID loop, L_a and L_b are effective inductances, I is total current, and I_s is circulating current. (C) Sample resistance R as a function of T for three GLB SQUIDs. A smooth R(T) across the T_c of Sr₂RuO₄ (around 1.4 K) indicates that R(T) is dominated by the tunnel barrier.

High resolution polar Kerr effect

Jing Xia et al., PRL 97, 167002 (2006)

FIG. 3. Representative results of training the chirality with an applied field. (a) ± 93 Oe field cool, then zero-field warm-up (\bigcirc). The two solid squares represent the last two points just before the field was turned off. (b) -47 Oe field cool, then zero-field warm-up (\bigcirc). Dashed curves are fits to a BCS gap temperature dependence.

$$\vec{d} = \Delta_0 \cdot \hat{z} \cdot (k_x \pm i \cdot k_y) \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

A.P. Mackenzie and Y. Maeno, Rev. Mod. Phys. **75**, 657 (2003).

Magnetism in Sr₂RuO₄ and inelastic neutron scattering

magnetism in Sr₂RuO₄ / inelastic neutron scattering

nesting : α/β -Fermi surface

dynamic suszeptibility (RPA)

$$\chi_{0}(q,\omega) = (g\mu_{B})^{2} \sum_{k,i,j} \frac{M_{k;(k+q)}^{i,j} [f(\varepsilon_{k,i}) - f(\varepsilon_{(k+q),j})]}{\varepsilon_{(k+q),j} - \varepsilon_{q,i} - \hbar\omega + i0^{+}}$$
$$\chi(q) = \frac{\chi_{0}(q)}{1 - I(q)\chi_{0}(q)} \qquad I \sim \chi''(\vec{q},\omega)$$

Mazin and Singh , PRL (1999)

Inelastic neutron scattering

neutron sources

 $\begin{array}{c} U^{235} + n \rightarrow Mo^{95} + La^{139} + 2n \\ 235x7.6 \qquad 95x8.6 \qquad 138x8.4 \text{MeV} \\ \text{i.e. 200 MeV energy} \\ 6\text{MeV kinetic energy of the neutron} \end{array}$

Inelastic neutron scattering

 $d^2\sigma$

 $d\Omega d\omega$

Braden et al., PRB66, 064522 2002; PRL92, 097402, 2004.

 $2\mathbf{F}^2(\mathbf{Q})$

 $\pi(g\mu_B)^2$

 $\chi''(Q,\omega)$

- Scans at constant energy, E=6.2meV, along Q=(1.3 y 0) show a clear peak
- incommensurate fluctuations due to nesting in one-dimensional bands

Braden et al., PRB 2002

Energy-Temperaturedependency

$$\chi''(q_i, \omega) = \chi'(q_i, 0) \cdot \frac{\Gamma \cdot \omega}{\Gamma^2 + \omega^2}$$

- χ'(q₀,0) and Γ and FWHM
vary as function of T
- all indicate a close instability !

neutron diffraction in Ti-doped Sr₂RuO₄

static peaks at the incommensurate positions
 coherence ~40Å

- Sr₂RuO₄ is close to a QCP !

Pairing : Where is the problem ?

 assume : coupling via magnetic excitations and weak coupling (Fay & Appel; Monthoux & Lonzarich)

- application to Sr₂RuO₄: Mazin&Singh (1999) nesting response Ł d-wave SC ferromagnetic response Ł p-wave SC (Rice &Sigrist)

HOWEVER $d_{x^2-y^2}$ -wave SC inconsistent with experiment also d_{xy} -band should be active !!!

full spectrum ${\tt k}_{-}$ superconducting order parameter

 $\chi(q) = \frac{\chi_0(q)}{1 - I(q)\chi_0(q)}$

ferromagnetic fluctuations in Sr₂RuO₄ polarized neutron scattering

ferromagnetic fluctuations in Sr₂RuO₄

model : $\chi'(q)$

 $\Gamma = 15.5 \pm 1.4 \text{ meV}$ W = 0.53 ± 0.04 r.l.u.

quantitative agreement:

- NMR
- specific heat γ
- suszeptibility (q=0)

Ca_{2-x}Sr_xRuO₄ Structural properties

Nakatsuji et al. PRL 84 2666 (2000), Friedt et al. PRB 63, 174432 (2001), Braden et al. PRB 58, 847 (1998)

Structural distortions in Ca_{2-x}Sr_xRuO₄

Tilt distortion

Ca_{2-x}Sr_xRuO₄ Structural properties

Nakatsuji et al. PRL 84 2666 (2000), Friedt et al. PRB 63, 174432 (2001), Braden et al. PRB 58, 847 (1998)

Metal-insulator-transition in Ca₂RuO₄

Friedt et al. PRB 63, 174432 (2001), Braden et al. PRB 58, 847 (1998)

symmetry in metallic AND in insulating phases Pbca : one-c tilt plus one-c rotation

Antiferromagnetic order in Ca₂RuO₄

- two magnetic ordering schemes in a nearly stoichiometric powder
- best crystals only A-centering T_N~110K
- excess oxygen or Sr-substitution : B-centering T_N~150K

MI-transition : orbital effects

• orbital occupation changes : at MI-transition & in insulating phase

Orbital effects in Ca₂RuO₄

- 1. Orbital-Selective Mass Enhancements in Multiband *Ca2-xSrxRuO4* Systems Analyzed by the Extended Drude Model J. S. Lee et al., Phys. Rev. Lett. **96**, 057401 (2006)
- 2. Strong Orbital-Dependent *d*-Band Hybridization and Fermi-Surface Reconstruction in Metallic *Ca2-xSrxRu*O4 Eunjung Ko et al., Phys. Rev. Lett. **98**, 226401 (2007)
- 3. Subband Filling and Mott Transition in *Ca2-xSrxRuO4* A. Liebsch et al. Phys. Rev. Lett. 98, 216403 (2007)
- 4. Orbital Ordering Transition in *Ca2RuO*4 Observed with Resonant X-Ray Diffraction I. Zegkinoglou et al., PR.L. 95,136401 (2005)
- 5. Ferro-Type Orbital State in the Mott Transition System *Ca2-xSrxRuO4* Studied by the Resonant X-Ray Scattering Interference Technique M. Kubota et al., Phys. Rev. Lett. **95**, 026401 (2005)
- 6. Lattice dynamics and the electron-phonon interaction in *Ca2RuO4* H. Rho et al., Phys. Rev. B 71, 245121 (2005)
- 7. Orbital-Selective Mott Transitions in the Degenerate Hubbard Model Akihisa Koga et al., Phys. Rev. Lett. 92, 216402 (2004)
- 8. Correlation effects in *Sr2RuO4* and *Ca2RuO4* : Valence-band photoemission spectra and self-energy calculations T. T. Tran et al., Phys. Rev. B **70**, 153106 (2004)
- 9. Orbital-dependent phase control in Ca2-*x*Sr*x*RuO4 (0<-*x*<-0.5) Zhong Fang et al., Phys. Rev. B 69, 045116 (2004)
- 10. Orbital state and metal-insulator transition in Ca2-*x*Sr*x*RuO4 (*x*=0.0 and 0.09) studied by x-ray absorption spectroscopy T. Mizokawa et al., Phys. Rev. B 69, 132410 (2004)
- 11. Raman scattering studies of spin, charge, and lattice dynamics in Ca2-xSrxRuO4 (0<~x<0.2) H. Rho et al., PRB 68, 100404 (2003)
- 12. Change of Electronic Structure in Ca2RuO4 Induced by Orbital Ordering J. H. Jung et al., Phys. Rev. Lett. 91, 056403 (2003)
- 13. Electron and Orbital Correlations in Ca2-xSrxRuO4 Probed by Optical Spectroscopy J. S. Lee et al, PRL. 89, 257402 (2002)
- 14. Orbital state and metal-insulator transition in Ca2-*x*Sr*x*RuO4 studied by model Hartree-Fock calculations M. Kurokawa et al. Phys. Rev. B 66, 024434 (2002)
- **15. Pressure-Tuned Collapse of the Mott-Like State in Can+1RunO3n+1 (n=1,2): Raman Spectroscopic Studies** C. S. Snow et al., Phys. Rev. Lett. **89**, 226401 (2002)
- 16. Prediction of Orbital Ordering in Single-Layered Ruthenates Takashi Hotta and Elbio Dagotto Phys. Rev. Lett. 88, 017201 (2002)
- 17. From Mott insulator to ferromagnetic metal: A pressure study of Ca2RuO4 Fumihiko Nakamura et al., PRB 65, 220402 (2002)
- 18. Spin-Orbit Coupling in the Mott Insulator Ca2RuO4 T. Mizokawa et al. Phys. Rev. Lett. 87, 077202 (2001)
- **19.** Magnetic phase diagram of Ca2-*x*Sr*x*RuO4 governed by structural distortions Z. Fang Phys. Rev. B 64, 020509 (2001)
- 20. Quasi-Two-Dimensional Mott Transition System Ca2-xSrxRuO4 S. Nakatsuji et al. Phys. Rev. Lett. 84, 2666 (2000)
- **21.** Electronic structure of Ca2RuO4: A comparison with the electronic structures of other ruthenates L. M. Woods PRB **62**, 7833 (2000)
- 22. Ground-state instability of the Mott insulator Ca2RuO4: Impact of slight La doping on the metal-insulator transition and magnetic ordering G. Cao et al., Phys. Rev. B 61, R5053 (2000)
- 23. Destruction of the Mott insulating ground state of Ca2RuO4 by a structural transition C. S. Alexander et al., PRB 60, R8422 (1999)
- 24. Layered Ruthenium Oxides: From Band Metal to Mott Insulator A. V. Puchkov et al., Phys. Rev. Lett. 81, 2747 (1998)

metal-insulator-transition as function of doping

anomalous metals close to MI transition

magneto-elastic coupling : 0.2<x<1.5

Magneto-elastic coupling : x ~ 0.2

Magnetization density

$$x=0.5$$

Spin-density: d_{xy}-character Gukasov et al. PRL 89 (2002)

structural anomalies in Ca_{1.8}Sr_{0.2}RuO₄

temperature dependencies indicate crossover

low temperature anomaly
strongest for x=0.2

M. Kriener et al., PRL 95, 267403 (2005).

metamagnetism in Ca_{1.8}Sr_{0.2}RuO₄

S. Nakatsuji, et al., PRL 2003.

field dependencies

M. Kriener et al., PRL 95, 267403 (2005).J. Baier et al., condmat0610769.

Electronic transition in Ca_{2-x}Sr_xRuO₄

neutron-powder-diffraction at high field GEM (ISIS)

- zero field : lattice flattening- high field : lattice elongation

Electronic transition in Ca_{2-x}Sr_xRuO₄

(GEM ISIS & Fullprof)

Tuning of orbital occupation

- nearly localized electrons (close to the Mott transition)

Ł high electronic Grüneisen-parameter

zero field : electrons move into the γ-band upon cooling
 high field : electrons leave γ-band

strong effects in tilted phase (x~0.2)

Incommensurate scattering around Ca_{1.5}Sr_{0.5}RuO₄

X~0.5 Ca_{1.38}Sr_{0.62}RuO₄

scattering near (0.2,0,0)

$$\gamma = \frac{\pi k_B^2}{\hbar} \langle \frac{1}{\Gamma(\mathbf{Q})} \rangle_{BZ}$$

O. Friedt et al., PRL 93, 147404 (2004).

Magnetic fluctuations & metamagnetism

- paramagnons at 10K
- they get suppressed at low T

P. Steffens et al., PRL 2007

Ca_{1.8}Sr_{0.2}RuO₄: Magnetic fluctuations

x=0.2

Conclusions

Interplay between charge, orbital and magnetic degrees of freedom in layered-ruthenates.

- pure Sr₂RuO₄: unconventional superconductor strong nesting-type fluctuations but also broad quasi-FM fluctuations
- metal-insulator transition in Ca₂RuO₄ driven through orbital rearrangement "continuous" aspects
- metamagnetism in Ca_{2-x}Sr_xRuO₄ very flat bands close to the MI transition (heavy QP) orbital occupation important competition of at least two magnetic instabilities field-induced FM paramagnons

