

Skyrmions in SrRuO₃ based heterostructures?

University of Cologne | Institute of Physics II | Lena Wysocki | 11/21/2018

news & views

SPINTRONICS Skyrmionics gets hot

Stefan Krause and Roland Wiesendanger

Observed at room temperature -> ambient conditions

Manipulation by electric currents -> enables application

Size in the nm range -> high information density

Topological protection -> stability/reliability

Krause, Wiesendanger. Nature Materials, 15(2016)

SrRuO₃ based multilayers

Orthorhombic

Gan et al., APL 85, 5297 (1999)

THE: Fingerprint of skyrmions

Interface-driven topological Hall effect in SrRuO₃-SrIrO₃ bilayer

Jobu Matsuno,¹* Naoki Ogawa,¹ Kenji Yasuda,² Fumitaka Kagawa,¹ Wataru Koshibae,¹ Naoto Nagaosa,^{1,2} Yoshinori Tokura,^{1,2} Masashi Kawasaki^{1,2}

additional contribution to the Hall effect

- -> topological Hall effect
- -> indication for noncollinear magnetic order

Interface-driven topological Hall effect in SrRuO₃-SrIrO₃ bilayer

Jobu Matsuno,¹* Naoki Ogawa,¹ Kenji Yasuda,² Fumitaka Kagawa,¹ Wataru Koshibae,¹ Naoto Nagaosa,^{1,2} Yoshinori Tokura,^{1,2} Masashi Kawasaki^{1,2}

J. Matsuno et al., Sci. Adv. 2, e1600304 (2016)

2 MLs SrIrO₃

SrTiO₃

MLs SrRuO₃

ARTICLE

DOI: 10.1038/s41467-017-02629-3

OPEN

Electric-field control of anomalous and topological Hall effects in oxide bilayer thin films

Yuki Ohuchi¹, Jobu Matsuno ⁹, Naoki Ogawa², Yusuke Kozuka¹, Masaki Uchida ¹, Yoshinori Tokura^{1,2} & Masashi Kawasaki^{1,2}

ORIGINAL PAPER

Anomalous Transverse Resistivity

July 2018

Defect-Induced Anomalous Transverse Resistivity in an Itinerant Ferromagnetic Oxide

Daisuke Kan* and Yuichi Shimakawa

3rd of October 2018

Emergence of robust 2D skyrmions in $SrRuO_3$ ultrathin film without the capping layer

Byungmin Sohn,^{1, 2} Bongju Kim,^{1, 2}, Se Young Park,^{1, 2} Hwan Young Choi,³ Jae Young Moon,³ Taeyang Choi,⁴ Young Jai Choi,³ Tae Won Noh,^{1, 2} Hua Zhou,⁵ Seo Hyoung Chang,⁴, Jung Hoon Han,⁶, and Changyoung Kim^{1, 2}, Seo Hyoung Chang,⁴, Seo Hyo

Berry phase engineering at oxide interfaces

Dirk J. Groenendijk,^{1,} Carmine Autieri,^{2,3} Thierry C. van Thiel,^{1,†} Wojciech Brzezicki,^{2,3} Nicolas Gauquelin,⁴ Paolo Barone,² Karel H. W. van den Bos,⁴ Sandra van Aert,⁴ Johan Verbeeck,⁴ Alessio Filippetti,^{5,6} Silvia Picozzi,² Mario Cuoco,^{2,7} and Andrea D. Caviglia^{1,‡}

12th of October 2018

Berry phase engineering at oxide interfaces

12th of October 2018

Dirk J. Groenendijk,^{1,} Carmine Autieri,^{2,3} Thierry C. van Thiel,¹, Wojciech Brzezicki,^{2,3} Nicolas Gauquelin,⁴ Paolo Barone,² Karel H. W. van den Bos,⁴ Sandra van Aert,⁴ Johan Verbeeck,⁴ Alessio Filippetti,^{5,6} Silvia Picozzi,² Mario Cuoco,^{2,7} and Andrea D. Caviglia¹,

Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures

Lingfei Wang^{1,2*}, Qiyuan Feng^{3,4,8}, Yoonkoo Kim^{5,8}, Rokyeon Kim^{0,1,2,8}, Ki Hoon Lee^{1,2,8}, Shawn D. Pollard^{0,6}, Yeong Jae Shin^{1,2}, Haibiao Zhou^{1,2,3}, Wei Peng^{1,2}, Daesu Lee^{1,2,8}, Hyunsoo Yang^{6,6}, Jung Hoon Han⁷, Miyoung Kim⁵, Qingyou Lu^{0,3,4*} and Tae Won Noh^{1,2*}

November 2018

nature

materials

ARTICIES

https://doi.org/10.1038/s41563-018-0204-4

 $c - b: \Delta H = -0.02 \text{ T}, \Delta n = 127 \pm 19$

d – c: ΔH = –0.08 T, Δn = 376±121

Summary

Asymmetric multilayers with varying SrRuO₃ layer thickness:

$6 \cdot [m MLs SrRuO_3 / 2 MLs SrIrO_3 / 2 MLs SrZrO_3]$

linear contribution: ordinary Hall effect hysteresis shape: anomalous Hall effect

Our multilayers vs bilayers

Measurements performed by Jörg and Ramil

J. Matsuno et al., Sci. Adv. 2, e1600304 (2016)

Our multilayers vs bilayers

6*(10 MLs SrRuO₃/2 MLs SrIrO₃/2 MLs SrZrO₃)

7 MLs SrRuO₃/2 MLs SrIrO₃

Influence of the interface

19

Measurements performed by Jörg

Thank your for your attention \odot