skip to content

QM2 | Igor Boettcher

On 20 December at 14:30 - 16:00 in Seminar Room of the Institute of Physics II

Igor Boettcher

 

Complex tensor order and quantum criticality in spin-orbit coupled superconductors

 

A revolutionary new direction in the field of superconductivity emerged recently with the synthesis of superconductors with strong inherent spin-orbit coupling of electrons, such as the half-Heusler compounds YPtBi or LuPdBi. Due to band inversion, the low-energy degrees of freedom are electrons at a three-dimensional quadratic band touching point with an effective spin 3/2, which allows for Cooper pairs with spins ranging from 0 to 3. I will illuminate some of the unconventional superconducting properties that arise from this band structure and attractive short-range interaction: (i) At strong coupling, the system features an s-wave superconducting quantum critical point with non-Fermi liquid scaling of fermions and several other unusual scaling properties. (ii) The system may further undergo a transition into a phase with complex tensor order, which is a superconducting state captured by a complex-valued matrix order parameter describing Cooper pairs having spin 2. Here the interplay of both tensorial and complex nature results in a rich and intriguing phenomenology. I will discuss the mean-field phase structure as a function of doping and temperature, and relate our finding to experiments in YPtBi. Further, the critical properties of this new paradigm for superconductivity will be addressed.

 

Contact Person: Sebastian Diehl